$16 \& R^{\circ}$

GT600 AC Drive

High Performance Open

and Closed Loop

Please Read This Important Information

$K \& R$ Technology designs and manufactures the GT600 Series of AC Drives for the industrial automation market and is committed to a policy of continuous product development and improvement.

The product is supplied with the latest version software and the contents of this manual are correct at the time of printing. If there is any doubt with regards to the software version or the manual contents, please contact K\&R Technology or the Authorised Distributor.

K\&R Technology accepts no liability for any consequences resulting from negligent or incorrect installation or parameter adjustment of the AC Drive, including mismatching of the AC Drive with the motor.

The AC Drive is intended as an industrial automation component for professional incorporation into a complete machine or process system. It is the responsibility of the user or machine builder or installation contractor or electrical designer/engineer to take all necessary precautions to ensure that the system complies with current standards, and to provide any devices (including safety components), required to ensure the overall safety of the equipment and personnel. The AC Drive, under no circumstances, be considered as a safety device. If in doubt, please contact K\&R Technology or the Authorised Distributor.

Please read this manual before starting work on the AC Drive. Only qualified personnel with relevant training and experience should be allowed to work on the AC Drive as high voltages (including DC voltage) exists within the AC Drive, even after power OFF. Strict adherence to this instruction is required to ensure a high level of safety. If in doubt, please consult with K\&R Technology or the Authorised Distributor.

Contents

Please Read This Important Information 1
Safety Information and Precautions 4
Chapter 1 Product Information 8
1.1 Product Type Identification 8
1.3 Ratings 13
1.4 Technical Specifications 14
1.5 De-rating 18
Chapter 2 Mechanical Installation 20
2.1 Installation Environment 20
2.2 Mounting Orientation and Clearance 21
2.3 Mounting Dimensions 23
2.4 Installation Method and Procedures 26
2.5 Remove and Refit the Front Cover 40
Chapter 3 Electrical Installation 44
3.1 Typical System Connection 44
3.2 Main Circuit Wiring 45
3.3 Control Circuit Wiring 61
3.4 Wiring Checklist 70
Chapter 4 Operating Panel (Keypad \& Display) 72
4.1 Introduction 72
4.2 Inbuilt LED Operating Panel 72
Chapter 5 Quick Setup 86
5.1 Get Familiar With Operating Panel 86
5.2 Setup Flowchart 87
Chapter 6 Description of Parameters 100
6.1 Start/Stop Command Source 100
6.2 Set Frequency Reference 108
6.3 Start/Stop the AC Drive 135
6.4 Motor Auto-tuning 142
6.5 Control Performance 146
6.6 Protections 157
6.7 Monitoring 165
6.8 Process Control 172
6.9 Control Circuit Terminals 190
6.10 Communication 202
6.11 Auxiliary Function 210
Chapter 7 Interfaces and Communication 220
7.1 About Use of GT600 Terminals 220
7.2 Serial Communication 223
7.3 About Multi-functional Extension Interfaces 224
7.4 Definition of Communication Data Address 225
7.5 Modbus Communication Protocol 228
Chapter 8 Peripherals and Options 238
8.1 MCCB, Fuse and Contactor 241
8.2 Braking Unit and Braking Resistor 242
8.3 External Operating Panel 246
8.4 Extension Cards 247
8.5 Through-hole Mounting Bracket. 274
Chapter 9 Maintenance and Inspection 280
9.1 Daily Inspection 280
9.2 Periodic Inspection 282
9.3 Lifetime of Fans and Electrolytic DC Bus Capacitors 284
9.4 Storage 288
9.5 Warranty Agreement 288
Chapter 10 Troubleshooting 290
10.1 Safety Information 290
10.2 Troubleshooting During Trial Run 291
10.3 Fault Display 293
10.4 Resetting Fault 294
10.5 Faults and Diagnostics 295
10.6 Symptoms and Diagnostics 302
Appendix A Standards Compliance 306
A. 1 CE Certification 306
A. 2 UL Certification 329
Appendix B Parameter Table 330
B. 1 Introduction 330
B. 2 Standard Parameters 331
B. 3 Monitoring Parameters 353
Index 355
Revison History 358

Safety Information and Precautions

Warnings, Cautions and Notes

A Warning contains information, which is essential for avoiding a safety hazard.

A Caution contains information, which is necessary for avoiding a risk of damage to the product or other machine.

Note

A Note contains information which helps to ensure correct operation.

Electrical Safety

Extreme care must be taken at all times when working with the AC Drive or within the area of the AC Drive. The voltages used in the AC Drive can cause severe electrical shock or burns and is potentially lethal. Only authorized and qualified personnel should be allowed to work on AC Drives

Machine/System Design and Safety of Personnel

Machine/system design, installation, commissioning startups and maintenance must be carried out by personnel who have the necessary training and experience. They must read this safety information and the contents of this manual. If incorrectly installed, the AC Drive may present a safety hazard.

The AC Drive uses high voltages and currents (including DC), carries a high level of stored electrical energy in the DC bus capacitors even after power OFF. These high voltages are potentially lethal.

The AC Drive is NOT intended to be used for safety related applications/functions. The electronic "STOP \& START" control circuits within the AC Drive must not be relied upon for the safety of personnel. Such control circuits do not isolate mains power voltages from the output of the AC Drive. The mains power supply must be disconnected by a electrical safety isolation device before accessing the internal parts of the AC Drive.

Safety risk assessments of the machine or process system which uses an AC Drive must be undertaken by the user and or by their systems integrator/designer. In particular the safety assessment/design must take into consideration the consequences of the AC Drive failing or tripping out during normal operation and whether this leads to a safe stop position without damaging machine, adjacent equipment and machine operators/users. This responsibility lies with the user or their machine/process system integrator.

The system integrator/designer must ensure the complete system is safe and designed according to the relevant safety standards. K\&R Technology and Authorized Distributors can provide recommendations related to the $A C$ drive to ensure long term safe operation.

Working Environment and Handling

Matters related to transport, storage, installation, IP rating, working environment and AC Drive tolerance limits (temperature, ambient, voltage, pollution, vibration etc) can be found within this manual. The guidelines and recommendations should be followed in order to gain long term trouble free operation as the lifetime of the AC Drive is dependent on the working environment and correct handling of the product in the initial installation stage.

Electrical Installation - Safety

Electrical shock risk is always present within an AC Drive including the output cable leading to the motor terminals. Where dynamic brake resistors are fitted external to the AC Drive, care must be taken with regards to live contact with the brake resistors, terminals which are at high DC voltage and potentially lethal. Cables from the AC Drive to the dynamic brake resistors should be double insulated as DC voltages are typically 600 to 700 VDC.

Mains power supply isolation switch should be fitted to the AC Drive. The mains power supply must be disconnected via the isolation switch before any cover of the AC Drive can be removed or before any servicing work is undertaken

Stored charge in the DC bus capacitors of the PWM AC Drive is potentially lethal after the AC supply has been disconnected. The AC supply must be isolated at least 10 minutes before any work can be undertaken as the stored charge will have been discharged through the internal bleed resistor fitted across the DC bus capacitors.

Whenever possible, it is good practice to check the DC bus voltage with a VDC meter before accessing the AC Drive bridge. Where the AC Drive input is connected to the mains supply with a plug and socket, then upon disconnecting the plug and socket, be aware that the plug pins may be exposed and internally connected to the DC bus capacitors (via the internal bridge rectifier in reversed bias). Wait 10 minutes to allow stored charge in the DC bus capacitors to be dissipated by the bleed resistors before commencing work on the AC Drive.

When using an earth leakage circuit breaker, use a residual current operated protective device (RCD) of type B (breaker which can detect both AC and DC). Leakage current can cause unprotected components to operate incorrectly. If this is a problem, lower the carrier frequency, replace the components in question with parts protected against harmonic current, or increase the sensitivity amperage of the leakage breaker to at least 200 mA per drive.

Factors in determining leakage current:

- Size of the AC drive
- AC drive carrier frequency
- Motor cable type and length
- EMI/RFI filter

For more information, contact K\&R.

Approvals

Certification marks on the product nameplate indicate compliance with the corresponding certificates and standards.

Certification	Mark	Directives		Standard
CE	EMC directives	$2014 / 30 /$ EU	EN 61800-3	
		$2014 / 35 /$ EU	EN 61800-5-1	
		RoHS directives	$2011 / 65 /$ EU	EN 50581

Note	- The above EMC directives are complied with only when the EMC electric installation requirements are strictly observed. - Machines and devices used in combination with this drive must also be CE certified and marked. The integrator who integrates the drive with the CE mark into other devices has the responsibility of ensuring compliance with CE standards and verifying that conditions meet European standards. - The installer of the drive is responsible for complying with all relevant regulations for wiring, circuit fuse protection, earthing, accident prevention and electromagnetic (EMC regulations). In particular fauld discrimination for preventing fire risk and solid earthing practices must be adhered to for electrical safety (also for good EMC practice). - For more information on certification, consult our distributor or sales representative.

AC Motor (Induction/Asynchronous)

AC induction motors are designed to run at fixed speed at the 50 or 60 Hz supply frequency and therefore it's cooling capability is dependent on the axial driven fan mounted at the non drive end.

When the motor is operated at variable speed with the AC Drive, it is necessary to consider the reduced cooling rate especially when running at low speed for considerable period of time. Please consult with the motor manufacturer who can provide cooling solutions such as a electric force ventilated fan or an "AC Drive" rated AC motor designed to handle reduced speed running with AC Drives.

It is also necessary to consult with the motor manufacturer when above base speed ($>50 / 60 \mathrm{~Hz}$) running is required and or when high speed operations are required. Motor suppliers also provide solutions for encoder feedback devices for close loop operation with an AC Drive.

Adjusting AC Drive Parameters

The AC Drive when it leaves the factory with default settings should enable the user to get started quickly to check on the basic mechanical running conditions. At a later time, fine tuning to optimize the operation/ performance can be undertaken.

Such parameter tuning should be done by qualified personnel who have prior training on AC Drives. Some parameter settings if manipulated incorrectly can have adverse reactions and care should be taken especially during the commissioning startup stages to prevent personnel from engaging the machine.

This manual provides a complete list of the parameters with functional description and care should always be taken whenever parameters are adjusted during a live running startup. K\&R Technology and Authorized Distributors can provide product training and if in doubt seek advice.

1. Product Information

1.1 Product Type Identification 8
1.2 Internal View of GT600 9
1.3 Ratings 13
1.4 Technical Specifications 14
1.5 De-rating 18

Chapter 1 Product Information

Safety Information			
caution			
	Do not lift/carry the drive by carrying the front cover. Failure to comply may result in personal injury. Follow proper electrostatic discharge (ESD) procedures when operating the drive. Failure to comply will risk damaging the internal circuit of the drive.		

1.1 Product Type Identification

Each model in the range of the drive systems has a model number that identifies important characteristics and specifications for that particular unit.

Figure 1-1 Product type identification

Note (a): The model number may include a suffix "XXXXXXXXXX", Where "XXXXXXXXXX" can be blank or combination of any alphanumeric and/or symbols that represents customer identity.

Mark	With Output Reactor and Cabinet
Blank	No
L	Yes

1.2 Internal View of GT600

The drive can have either a plastic housing or a sheet metal housing, depending on the power rating.
Figure 1-2 Internal view GT600-4T18.5GB to GT600-4T37GB (plastic housing)
10 OL
A 01 omin

0 mm
A) 10 min
 and model of the drive here

Nameplate Refer to Figure 1.1. nterface of remote operating panel Referto section 8.3.

Read the user guide of the AC drive carefully before installation or operation.
Do not remove the front cover while the power is on or within10
minutes after the power is turned off.
Wait for a period of 10 minutes after the AC drive is powered off
before starting any repair, maintenance or wiring work.

Figure 1-3 Internal view of GT600-4T45GB to GT600-4T160G (sheet metal housing)

Figure 1-4 Internal view of GT600-4T200G to GT600-4T450G

Figure 1-5 Internal view of GT600-4T200G(-L) to GT600-4T450G(-L)

1.3 Ratings

Table 1-1 Ratings of GT600-4T18.5GB to Ratings of GT600-4T160G

Voltage Class Model: GT600-4TxxxG(B $\left.{ }^{(1)}\right)$				380 to 480 VAC										
				18.5	22	30	37	45	55	75	90	110	132	160
Frame Size				T5		T6		T7		T8			T9	
Dimension		Hei Wid Dep		[H] : 350 mm [W]: 210 mm [D]: 192 mm		[H]: 400 mm [W]: 250 mm [D]: 220 mm		[H1]: 540 mm [W]: 300 mm [D]: 275 mm		[H1]: 576 mm [W]: 338 mm [D]: 315 mm			[H1]: 915 mm [W]: 400 mm [D]: 320 mm	
Mounting Hole (mm)				Ф6		Ф7		Ф10		Ф10			Ф10	
등	Rated input voltage			Three-phase 380 to 480 V , -15% to $+10 \%$										
	Mounting Hole (mm)			49.5	59	57	69	89	106	139	164	196	240	287
	Rated input frequency			$50 / 60 \mathrm{~Hz}, \pm 5 \%$										
	Power capacity, [kVA]			45	54	52	63	81	97	127	150	179	220	263
	Applicable motor		[kW]	18.5	22	30	37	45	55	75	90	110	132	160
			[HP]	25	30	40	50	60	75	100	120	150	180	220
	Output current, [A]			37	45	60	75	91	112	150	176	210	253	304
	Default carrier frequency, [kHz]			6	6	6	5	5	4	3	3	3	3	3
	Overload capacity			150\% for 60 Sec										
	Output Voltage			Three phase 0 V to input voltage										
	Max. output frequency			50 to 500 Hz										
	Recommended power, [kW]			4	4.5	6	7	9	11	15	18	22	26	32
	Recommended resistance, [Ω]			32	27	10	16	13	10.5	7.7	6.4	5.3	4.4	3.6
	Thermal design power, [kW]			0.478	0.551	0.694	0.815	1.01	1.21	1.57	1.81	2.14	2.85	3.56
	Air flow, [CFM]			51.9	57.4	118.5	118.5	122.2	122.2	218.6	287.2	342.2	547	627
Enclosure				IP20										

Note
[11 : "B" denotes build-in brake function, for model GT600-4T18.5G to GT600-4T75G.

Table 1-2 Ratings of GT600-4T200G(-L) to GT600-4T450G(-L)

Voltage Class				380 to 480 VAC							
Model: GT600-4TxxxG(-L)				200	220	250	280	315	355	400	450
Frame size				T10		T11		T12			
Dimension (GT600- 4TxxxG)		Height Width Depth		[H1]: 1134 mm [W]: 300 mm [D]: 500 mm		[H1]: 1284 mm [W]: 330 mm [D]: 545 mm		[H1]: 1405 mm [W]: 340 mm [D]: 545 mm			
Dimension (GT600-4TxxxGL)		Hei		[H1]: 1472 mm [W]: 300 mm [D]: 500 mm		[H1]: 1622 mm [W]: 330 mm [D]: 545 mm		[H1]: 1733 mm [W]: 340 mm [D]: 545 mm			
Mounting Hole (mm)				Ф13				Ф16			
	Rated input voltage			Three-phase 380 to 480V, -15\% to +10\%							
	Rated input current [A]			365	410	441	495	565	617	687	782
	Rated input frequency			$50 / 60 \mathrm{~Hz}, \pm 5 \%$							
	Power capacity, [kVA]			334	375	404	453	517	565	629	716
	Applicable motor		[kW]	200	220	250	280	315	355	400	450
			[HP]	267	293	333	373	420	473	533	600
	Output current, [A]			377	426	465	520	585	650	725	820
	Default carrier frequency [kHz]			3	3	3	3	3	3	3	3
	Overload capacity			150\% for 60 Sec							130% for 60 Sec
	Output Voltage			Three phase 0 V to input voltage							
	Max. output frequency			50 to 500 Hz							
	Recommended power, [kW]			38	42	48	54	60	69	78	87
	Recommended resistance, [Ω]			2.9	2.7	2.3	2.1	1.9	1.7	1.5	1.3
	Thermal design power, [kW]			4.15	4.55	5.06	5.33	5.69	6.31	6.91	7.54
	Air flow, [CFM]			638.4	722.5	789.4	882	645	860	860	860
Enclosure				IP00							

1.4 Technical Specifications

Table 1-3 Technical specifications of GT600

Item		Description
Standard functions	Input frequency resolution	Digital setting: 0.01 Hz Analog setting: Max. frequency $\times 0.025 \%$
	Control mode	Sensorless vector control (SVC) Feedback vector control (FVC) Voltage/Frequency (V/F) control
	Startup torque	$\begin{aligned} & 0.25 \mathrm{~Hz} / 150 \% \text { (SVC) } \\ & 0 \mathrm{~Hz} / 180 \% \text { (FVC) } \end{aligned}$
	Speed range	$\begin{aligned} & 1: 200 \text { (SVC) } \\ & \text { 1:1000 (FVC) } \end{aligned}$
	Speed stability accuracy	$\begin{aligned} & \hline \pm 0.5 \% \text { (SVC) } \\ & \pm 0.02 \% \text { (FVC) } \end{aligned}$
	Torque control accuracy	$\pm 5 \%$ for 10 Hz above (SVC) $\pm 3 \%$ (FVC)
	Torque boost	Customized boost 0.1 \% to 30.0 \%
	V/F curve	Straight-line V/F curve Multi-point V/F curve Square V/F curve Complete V/F separation Half V/F separation
	Ramp mode	Straight-line ramp S-curve ramp Four separate acceleration/deceleration time settings in the range of 0 s to 6500s.
	DC injection braking	DC injection braking frequency: 0 Hz to max. frequency DC injection braking active time: 0.0 s to 36.0 s . Current level of DC injection braking: 0\% to 100\%.
	Jog running	Frequency range of jog running: 0.00 to 50.00 Hz Acceleration/Deceleration time of jog running: 0.0 s to 6500.0s
	Onboard multiple preset speeds	The system implements up to 16 speeds by using simple PLC function or by using digital input signals.
	Onboard PID	The system implements the proportionalegral-derivative (PID) function in the closed-loop control.
	Automatic voltage regulation (AVR)	The system maintains a constant output voltage automatically when the grid voltage changes through the permissible range.
	Overvoltage and overcurrent stall control	The system limits the output current and voltage automatically during operation to prevent frequent or excessive trips.
	Torque limit and control	The system limits the torque automatically to prevent frequent overcurrent tripping during operation. Torque control is applied in vector control.
Individualized functions	Power dip ride-through	Load feedback energy compensates for any voltage reduction, allowing the drive to continue to operate for a short time during power dips.
	Overcurrent fast prevention	The function helps to avoid frequent overcurrent faults.

Item		Description
	Virtual I/O	Five groups of virtual digital input/outputs (DI/DO) support simple logic control.
	Timing control	Time range: 0.0 to 6500.0 minutes
	Dual-motor switchover	The drive have two groups of motor parameters and can control up to two motors.
	Multiple field buses	The drive supports four field buses: Modbus-RTU PROFIBUS-DP CANlink CANopen
	Motor overheat protection	Option: The optional input/output (I/O) extension card allows Al 3 to receive a signal from the motor temperature sensor input (PT100, PT1000) to implement motor overheat protection.
	Multiple encoder types	The drive supports a range of different encoder types: Differential encoder Open-collector encoder Resolver
	User programmable function	Option: The optional programming card supports secondary development in a programming environment compatible with the K\&R programmable logic controller (PLC).
	Advanced background software	Software in the drive allows users to configure some operating parameters, and provides a virtual oscilloscope display that shows system status.
RUN	Command source	Allows different methods of switching between command sources: Operating panel (keypad \& display) Terminal I/O control Serial communication
	Main frequency reference setting channel	Supports up to 10 frequency reference setting channels and allows different methods of switching between frequency reference setting channels: Digital setting Analog voltage reference Analog current reference Pulse reference Communication reference
	Auxiliary frequency reference setting channel	Supports up to 10 auxiliary frequency sources, and allows fine tuning of the auxiliary frequency and main \& auxiliary calculation.
	Input terminals	Standard: Five digital input (DI) terminals, one of which supports up to 100 kHz high-speed pulse inputs. Two analog input (AI) terminals, one of which supports only 0 to 10 V input, and the other supports 0 to 10 V and 4 to 20 mA current input. Expanded capacity: Five digital input (DI) terminals. One Al terminal that supports -10 to 10 V voltage input and PT100/PT1000 motor temperature sensor inputs.

Item		Description Standard Single high-speed pulse output terminal (open-collector) for a square-wave signal output in the frequency range 0 to 100 kHz Single digital output (DO) terminal Single relay output terminal Single analog output (AO) terminal that supports either a current output in the range 0 to 20 mA or a voltage output in the range 0 to 10 V . Expanded capacity: Single extra DO terminal Single extra relay output terminal Single extra AO terminal that supports either a current output in the range 0 to 20 mA or a voltage output in the range 0 to 10 V .
	Output terminals	
Display and operating panel	LED display	The 6-character LED display shows parameter values.
	Key locking and function selection	Keys on the control panel can be locked or partially locked electronically to prevent accidental operation. The range of some functions can be limited to a permitted range to prevent incorrect settings.
Protections	Phase loss protection	Input phase loss protection Output phase loss protection
	Instantaneous overcurrent protection	Stop when 250% of rated output current is exceeded
	Overvoltage protection	Stop when the DC bus voltage is above 820 V
	Undervoltage protection	Stop when the DC bus voltage is below 350 V
	Overheat protection	Protection triggered when the AC Drive bridge gets overheated.
	Overload protection	Stop after running at 150% of rated current for 60 seconds (for GT600-4T450G, stop after running at 130% of rated current for 60 seconds)
	Overcurrent protection	Stop when 2.5 times of rated current of the AC drive is exceeded.
	Braking protection	Braking unit overload protection Braking resistor short-circuit protection
	Short-circuit protection	Output phase-to-phase short-circuit protection Output phase-to-ground short-circuit protection
Environment	Installation location	Install the AC Drive where it is indoors and protected from direct sunlight, dust, corrosive or combustible gases, oil smoke, vapour, ingress from water or any other liquid, and salt.
	Altitude	Below 1000 m If the altitude exceeds 1000 m , de-rate the drive according to section 1.5 De-rating. Max. 3000 m for LVD directive requirement.
	Operation temperature	$-10^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C}$ If the ambient temperature is not in this range, de-rate the drive according to section 1.5 De-rating.
	Storage temperature	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	Humidity	Less than 95\% RH non-condensing.
	Vibration	Less than $5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{~g})$.
	Pollution degree	PD2
	Overvoltage category	OVC III

1.5 De-rating

The drive can be operated at above rated ambient temperature, altitude and default carrier frequency by de-rating drive capacity.

- Carrier Frequency De-rating

When carrier frequency of the drive is increased above default setting, you need to de-rate rated drive output current according to the following table:

Power	Carrier Frequency					
Phd (kW)	3 kHz	4 kHz	5 kHz	6 kHz	7 kHz	8 kHz
18.5	100.0%	100.0%	100.0%	100.0%	95.7%	91.6%
22	100.0%	100.0%	100.0%	100.0%	95.5%	91.4%
30	100.0%	100.0%	100.0%	100.0%	93.5%	87.7%
37	100.0%	100.0%	100.0%	94.4%	89.0%	84.0%
45	100.0%	100.0%	100.0%	94.0%	88.6%	83.7%
55	100.0%	100.0%	94.1%	88.9%	84.0%	79.5%
75	100.0%	91.8%	84.2%	77.5%	70.9%	65.2%
90	100.0%	90.8%	82.3%	74.9%	-	-
110	100.0%	91.9%	84.4%	77.7%	-	-
132	100.0%	95.65%	91.30%	86.96%	-	-
160	100.0%	94.08%	88.16%	82.24%	-	-
200	100.0%	93.07%	86.15%	79.22%	-	-
220	100.0%	93.69%	87.38%	81.06%	-	-
250	100.0%	93.43%	86.86%	80.29%	-	-
280	100.0%	93.59%	87.18%	80.77%	-	-
315	100.0%	93.90%	87.81%	81.71%	-	-
355	100.0%	93.54%	87.08%	80.26%	-	-
400	100.0%	93.79%	87.59%	81.38%	-	-

- Ambient Temperature De-rating

Drive operation between $-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ is normal without de-rating. Operation between $40^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ requires output current de-rating. Rated output current must be de-rated for 1.5% per $1^{\circ} \mathrm{C}$ temperature rise. Permissible maximum temperature is $50^{\circ} \mathrm{C}$.

- Altitude De-rating

The drive must be de-rated for an installation altitude of above 1000 meters because cooling effect available from ambient air reduces. Rated output current must be de-rated for 1% per 100 meters. Maximum altitude is 3000 meters.
2.1 Installation Environment 20
2.2 Mounting Orientation and Clearance 21
2.3 Mounting Dimensions 23
2.4 Installation Method and Procedures 26
2.5 Remove and Refit the Front Cover 40

Chapter 2 Mechanical Installation

2.1 Installation Environment

Item	Requirements
Cooling and ventilation	Install the AC drive on a backplate, and ensure there is sufficient space around the enclosure to allow for efficient heat dissipation. For details, see. 2.2 Mounting Orientation and Clearance
Mounting location	Ensure the mounting location is: - - Away from direct sunlight - In an area where humidity is 95% RH or less with no condensation - Protected against corrosive, combustible or explosive gases and vapours
Vibration	Ensure the mounting location is not affected by levels of vibration that exceeds 0.6 g. Avoid installing the enclosure near punching machines or other mechanical machinery that generates high levels of vibration or mechanical shock.
Protective enclosure	The AC drive must be installed in a nonconbustible cabinet that provides effective electrical and mechanical protection for CE requirements. Installation must conform to local and regional laws and regulations, and to relevant IEC requirements.

Corrosive, combustible or explosive gases

2.2 Mounting Orientation and Clearance

Mounting Orientation

Always mount the AC drive in an uprightposition.

Mounting Clearance

The mechanical clearance varies with the power ratings of the AC drive.
Figure 2-1 Correct mounting clearance
(Front view)

(Side View)

Power Rating	Clearance Requirements		
18.5 to 22 kW	$A \geq 10 \mathrm{~mm}$	$B \geq 200 \mathrm{~mm}$	$C \geq 40 \mathrm{~mm}$
30 to 37 kW	$A \geq 50 \mathrm{~mm}$	$B \geq 200 \mathrm{~mm}$	$C \geq 40 \mathrm{~mm}$
45 to 160 kW	$A \geq 50 \mathrm{~mm}$	$B \geq 300 \mathrm{~mm}$	$C \geq 40 \mathrm{~mm}$

Figure 2-2 Correct mounting clearance of GT600-4T200G(-L) to GT600-4T450G(-L)

The AC drive is designed with the cooling air flow direction from bottom to top. When installing several AC drives within a cabinet, it is necessary to line up the tops of the drives and allow cooling air clearance " A " as shown in Figure 2-3.

Figure 2-3 Clearance for multi-drive installation

Where an AC drive is required to be mounted directly above another AC drive, it is recommended to install an Air Guide Plate to divert exhaust cooling air of the bottom unit away from the top unit.

Figure 2-4 Installation of an air guide plate

2.3 Mounting Dimensions

Figure 2-5 Overall dimensions of GT600-4T18.5GB to GT600-4T37GB (plastic housing)

Figure 2-6 Overall dimensions of GT600-4T45GB to GT600-4T160G (sheet metal housing)

Table 2-1 Mounting dimensions of GT600

GT600 Model	Dimensions (mm)							Weight (kg)	Housing Type
	A	B	H	H1	W	D	d		
GT600-4T18.5GB	145	327	328	345	226	220	$\varnothing 7$	7.6	Plastic housing
GT600-4T22GB									
GT600-4T30GB	180	420	420	438	266	250	$\varnothing 7$	17.5	Plastic housing
GT600-4T37GB									
GT600-4T45GB	245	523	525	542	300	275	$\varnothing 10$	35	Sheet metal housing
GT600-4T55GB									
GT600-4T75GB	270	560	554	580	338	315	$\varnothing 10$	51.5	Sheet metal housing
GT600-4T90G									
GT600-4T110G									
GT600-4T132G	320	705	704	745	400	310	$\varnothing 10$	85	Sheet metal housing
GT600-4T160G									

Figure 2-7 Overall dimensions of GT600-4T200G to GT600-4T400G

Table 2-2 Mounting dimensions of GT60018.5GB to GT600-4T160G

GT600 Model	Dimensions (mm)										Weight (kg)	Housing Type
	A	A1	B	B1	H	H1	W	W1	D	D1		
GT600-4T200G	240	150	1035	86	1086	1134	300	360	500	$\varnothing 13$	110	Sheet metal housing
GT600-4T220G												
GT600-4T250G	240	185	1175	96	1238	1284	330	390	545	$\varnothing 13$	155	Sheet metal housing
GT600-4T280G												
GT600-4T315G	240	200	1280	101	1355	1405	340	400	545	$\varnothing 16$	185	Sheet metal housing
GT600-4T355G												
GT600-4T400G												
GT600-4T450G												

Figure 2-8 Overall dimensions of GT600-4T200G-L to GT600-4T450G-L

Table 2-3 Mounting dimensions of GT600-4T200G-L to GT600-4T450G-L

GT600 Model	Dimensions (mm)										Weight (Kg)	Housing Type
	A	A1	B	B1	H	H1	W	W1	D	D1		
GT600-4T200G-L	240	150	1035	424	1424	1472	300	360	500	Ф13	160	Sheet metal housing
GT600-4T220G-L												
GT600-4T250G-L	240	185	1175	435	1586	1622	330	390	545	Ф13	215	Sheet metal housing
GT600-4T280G-L												
GT600-4T315G-L	240	200	1280	432	1683	1733	340	400	545	Ф16	245	Sheet metal housing
GT600-4T355G-L												
GT600-4T400G-L												
GT600-4T450G-L												

2.4 Installation Method and Procedures

- Installation Method

The drive units enclosed in a sheet-metal housing have weights of 35 kg or more.
CAUTION These units have eye bolts that allow a mechanical hoist to support the weight of the unit during installation. To prevent personal injury or damage to the equipment, you must fit and use these eye bolts to support the drive during installation.

Mounting Method	Applicable Housing	Remark
Backplate mounting	Plastic housing Sheet metal housing	The AC drive is mounted directly on the backplate of the cabinet . It is secured using four screws or bolts at the corners of the backplate.
Through hole mounting	Plastic housing Sheet metal housing	It requires a cut-out in the backplate. The housing must be secured in place by using the through-hole mounting bracket and then be lifted into the cut-out.

The drives of GT600-4T200G to GT600-4T400G support mounting in cabinet only.

Mounting Method	Applicable Model	Remark
Mounting in cabinet	GT600-4T200G(-L) to GT600-4T400G(- L)	It requires installation of fixing beam, bottom mounting bracket and guide rail first. The AC drive can be then pushed into the cabinet and secured.

2.4.1 Backplate Mounting

Note

It is very important that you identify correct mounting hole locations and diameters of the drive you are installing. And check that you have identified correct dimensions before you start to drill the mounting holes.

The backplate mounting process is as follows:

1. Select a suitable location. See recommendations in 2.1 Installation Environment.
Check that there are no items of equipment, cables or pipes behind mounting
surface that might be damaged when you drill mounting holes.
2. Measure and mark the drilling centers for the four mounting holes according to the dimensions shown in Table 2-1 Mounting dimensions of GT600 for your model of the drive.
3. Carefully drill the four mounting holes at the correct diameter as shown in Table 2-1 for your model of the drive.
4. If necessary, lift the drive to the installation location. Hold it in correct position until there are fixings in place to secure it safely.
5. Add locking washers and flat washers to the securing bolts or screws, insert them through the four mounting holes in the housing, and tighten them to secure the housing to the backplate.

Figure 2-9 Backplate-mounted installation of a plastic housing

Figure 2-10 Backplate-mounted installation of a sheet metal housing

2.4.2 Through Hole Mounting

There are three steps in process of preparing a through hole mounting for the AC drive.

- Step1: Installing the through-hole mounting bracket
- The AC drive enclosed in a sheet-metal housing have weights of 35 kg or more. These units have eye bolts that allow a mechanical hoist to support the weight of the unit during installation. To prevent personal injury or damage to the equipment, you must fit and use these eye bolts to support the drive during installation.
- Always use suitable help to carry, move or support heavy drive housings. The sheet-metal housings are heavy, and you risk personal injury or damage to equipment if you attempt to carry, move or support them without help.
- Lay the drive housing on a strong, flat surface with control panel facing upwards.
- Fit the supplied through-hole mounting brackets to the housing:

Fit brackets in correct orientation, depending on whether you are pushing the housing through the front or from the rear of the supporting surface.

For sheet metal housing, use the two supplied eye bolts to secure the bracket to the top of the housing.

Through-hole mounting bracket installation for a plastic housing

Through-hole mounting bracket installation for a sheet metal housing

- Ensure all screws and bolts that secure the brackets to the housing are tight.

Note

The through-hole mounting bracket is an optian. For dimensions, refer to the chart in 8.5 Through-hole Mounting Bracket.

Step 2: Preparing the Backplate for Hole Cut-out

- Refer to Table 2-1 to identify your model of the drive housing, and make a careful note of the following dimensions:
- Mounting hole distances A and B
- Mounting hole diameter d
- Overall dimensions of the housing H and W
- Mark the backplate to identify the centers of the four mounting holes.
- Mark an outline for the cut-out by using the dimensions H and W. Ensure the cut-out is centred with respect to the mounting holes.
- Carefully drill the four mounting holes.
- Carefully cut a rectangular cut-out hole in the supporting surface according to the markings you made in step 6.
- Prepare edges of the cut-out to remove sharp edges and burrs.

Step 3: Installing the AC Drive into the Hole Cut-out

- Lift the AC drive into the cut-out you have prepared.

Insert the AC drive from the correct side of the mounting surface, depending on whether you are using a front-mounting or a rear-mounting arrangement.
(1) cunton

For the sheet metal housing, use a mechanical lift/device to support the housing in its mounting location until you have fixed it in place.

- Insert securing screws/bolts in the brackets, and secure the AC drive to the backplate.

Through hole installation of a plastic housing

Through hole installation of a sheet metal housing

Through-hole Mounting Bracket Models

Through-hole Mounting Bracket Model	Applicable AC Drive Model	Bracket Dimensions
GT600-AZJ-A1T5	GT600-4T18.5GB	Refer to 8.5 Through-hole
	GT600-4T22GB	Mounting Bracket.
GT600-AZJ-A1T6	GT600-4T30GB	
	GT600-4T37GB	
GT600-AZJ-A1T7	GT600-4T45GB	
	GT600-4T55GB	
GT600-AZJ-A1T8	GT600-4T75GB	
	GT600-4T90G	
	GT600-4T110G	
GT600-AZJ-A1T9	GT600-4T132G	
	GT600-4T160G	

2.4.3 Mounting in Cabinet

Models of GT600-4T18.5G to GT600-4T160G support backplate mounting, through hole mounting and mounting in cabinet. Models of GT600-4T200G(-L) to GT600-4T450G(-L) support mounting in cabinet only.

- Ventilation

Ventilation space must be considered when mounting drives of GT600-4T132G to GT600-4T450G.

Figure 2-11 Cabinet without fan on the top

Table 2-4 Specification of direct discharging cabinet

GT600 Model	Quantity of Fans	Total Air Volume (CFM)	Effective Area of Cabinet Top Air Inlet (mm^{2})	Effective Area of Cabinet Top Air Outlet (mm^{2})
GT600-4T132G	2	541	31809	50894
GT600-4T160G	2	620	31809	50894
GT600-4T200G(-L)	2	586	31809	50894
GT600-4T220G(-L)	2	722	31809	50894
GT600-4T250G(-L)	3	789	47713	76341
GT600-4T280G(-L)	3	882	47713	76341
GT600-4T315G(-L)	3	644	47713	76341
GT600-4T355G(-L)	3	796	47713	76341
GT600-4T400G(-L)	3	796	47713	76341
GT600-4T450G(-L)	3	796	47713	76341
Note:				
1. $\mathrm{CFM}=0.0283 \mathrm{~m}^{3} / \mathrm{min}$				
2. Effective area means through-hole area.				
3. The specification is only applicable to single unit installation in cabinet. For multi-drive installation in cabinet, contact Inovance for technical support.				

Figure 2-12 Cabinet with fan on the top

Table 2-4 Specification of cabinet with fan on the top

GT600 Model	Quantity of Fans	Total Air Volume (CFM)	Effective Area of Cabinet Top Air Inlet (mm^{2})	Min. Air Volume Required by the Top Fan (CFM)	Effective Area of Cabinet Top Air Outlet (mm^{2})
GT600-4T132G	2	541	31809	50894	$S=0.942 \times \mathrm{N} \times \text { (Dout2-DHUB2) }$ In the preceding formula, N means the quantity of top fans, Dout means diameter of the top fan, and DHUB means diameter of the top fan center HUB.
GT600-4T160G	2	620	31809	50894	
GT600-4T200G(-L)	2	586	31809	50894	
GT600-4T220G(-L)	2	722	31809	50894	
GT600-4T250G(-L)	3	789	47713	76341	
GT600-4T280G(-L)	3	882	47713	76341	
GT600-4T315G(-L)	3	644	47713	76341	
GT600-4T355G(-L)	3	796	47713	76341	
GT600-4T400G(-L)	3	796	47713	76341	
GT600-4T450G(-L)	3	796	47713	76341	
Note: 1. $C F M=0.0283 \mathrm{m3} / \mathrm{min}$ 2. Effective area means through-hole area. 3. The specification is only applicable to single unit installation in cabinet. For multi-drive installation in cabinet, contact Inovance for technical support.					

As shown in the following figure, an insulation barrier is required to prevent hot air circulating inside the cabinet.

Figure 2-13 Insulation barrier in the cabinet

Precautions

Nine-folding AL cabinet (PS cabinet) is recommended for installation of the drive.
Before installing the AC drive, check whether fixing beams with fixing holes are mounted to the cabinet back correctly. Then prepare bottom mounting bracket and guide rail. Reserve sufficient space at the bottom of the cabinet for side entry copper bar joint and operation.

You can push the AC drive into the cabinet or pull it out of the cabinet after moving the drive onto the guide rail. Make sure to align the castors to the guide rail and arrange two persons for drive push-in and pull-out to ensure safety.

- Refer to Figure 2-3 for mounting clearance requirements. Ensure there is sufficient space allow for efficient heat dissipation of the drive and the other devices in the cabinet.
- Arrange two persons for drive push-in and pull-out, as shown in Figure 2-13 and Figure 2-14.
- Refer to Figure 2-11 for cabinet layout before mounting the drive in cabinet. Wind screen must be installed at the top of the cabinet to avoid circulation of GT600 ventilation airflow. In addition, ensure there are air inlet openings at the bottom of the cabinet.
- For the bottom mounting bracket (delivered together with the product), see section 9.5 Dimensions of Bottom Mounting Bracket.
- Backplate mounting is not allowed for the 200 to 450 kW models. If backplate mounting is adopted, the AC drive will be suspended, bringing damage risks during transportation or in the environment with strong vibrations. Therefore, the 200 to 450 kW models must be installed in cabinets with mounting brackets or bases at the bottom.

There are three steps of installing the AC drive in cabinet.
Step 1: Get acquainted with cabinet layout.
Figure 2-14 Recommended cabinet layout of GT600-4T350G to GT600-4T450

Note	- The cabinet dimension is $2200 \times 800 \times 600 \mathrm{~mm}$. The height 2200 mm includes the 200 mm cabinet ventilation top cover but does not include the 100 mm cabinet base. - After push-in, remove the baffle on the top of the drive, preventing occurrence of overcurrent because ventilation air cannot flow out.

Step 2: Secure the fixing beam and reserve mounting holes
The cross section of the nine-folding AL cabinet is shown in the following figure.
Figure 2-15 Cross section of the nine-folding AL cabinet

When the drive of GT600250G(-L) to GT600450G(-L) is mounted in the nine-folding AL cabinet of 600 mm deep, the fixing beam must fold inwards. When the drive is mounted in the cabinet of 800 mm deep, folding inwards is not required.

Figure 2-16 Folding inwards of the fixing beam in the cabinet of 600 mm deep

v \quad| Fixing beam |
| ---: |
| Nine-folding |
| GT600 |

Note
If the cabinet has front door and back door, the cabinet of 600 mm deep is too small to accommodate the drive of GT600G250G(-L) to GT600G450G(-L). In this case, the cabinet of 800 mm deep is recommended.

Prepare and install the bottom mounting bracket and guide rail.

- Take the bottom mounting bracket out and install it at the bottom of the nine-folding AL cabinet. If a non-nine-folding AL cabinet is used, drill mounting holes for the mounting bracket on site.

Figure 2-17 Installing the bottom mounting bracket

- Assemble the guide rail (model: GT600-AZJ-A3T10, optional).

Figure 2-18 Assemble the guide rail

Connect the guide rail to the bottom mounting bracket, and fix them with two M6 nuts.
Figure 2-19 Connect the guide rail to the bottom mounting bracket

Step 3: Install the AC drive in the cabinet.

- Remove the front cover from the drive (referto 2.5 Remove and Refit the Front Cover). Then the handle is exposed.
- Arrange two persons to align castors of the drive to the guide rail.

Figure 2-20 Align castors of the drive to the guide rail

- Push the drive into the cabinet slowly. Please use auxiliary strap in the process of push-in to prevent turnover, as shown in the following figure.

Figure 2-21 Push the drive into the cabinet

Figure 2-22 Push-in completed

- Fix the AC drive to the beams on the back of the cabinet, as shown in the following figure.

- Check that installation of the drive is secure and remove the guide rail.

Note

- Ensure the four mounting holes on the back of the drive are connected to the beams securely.
- After push-in is completed, remove the baffle on the top of the drive. The baffle is used to prevent foreign objects such as screws from falling into the ventilation when mounting the drive in the cabinet.

- If it is necessary to place the drive in an upright position, prevent a stress on both sides of the drive and prevent placing the drive on an inclined floor because the drive weighs almost 200 kg . If inclination exceeds 5°, the drive may turn over.

2.5 Remove and Refit the Front Cover

You must remove the front cover before performing electrical installation

- Ensure the drive power-off time exceeds 10 minutes before removing the cover.
- Be careful when removing the front cover. A falling cover may cause personal injury.

${ }_{1}$ Pinch inwards on the latch on both sides of the cover to release the cover.

2 Hold the lower part of the front cover.
3Lift the front cover.

Remove and Refit the Front cover of a Sheet Metal Housing

Remove and Refit the Front cover of GT600-4T200G(-L) to GT600-4T450G(-L)

3.1 Typical System Connection 44
3.2 Main Circuit Wiring 45
3.3 Control Circuit Wiring 61
3.4 Wiring Checklist 70

Chapter 3 Electrical Installation

3.1 Typical System Connection

3.2 Main Circuit Wiring

32.1 Main Circuit Terminals

Terminal Arrangement
GT600-4T18.5GB to GT600-4T37GB

GT600-4T45GB to GT600-4T160G

GT600-4T200G to GT600-4T450G

Terminal Function
Table 3-1 Description of input and output connections of the drive

Terminal	Name	Description
R, S, T	Three-phase supply input	Connected to three-phase power supply.
$(+),(-)$	DC bus terminals	Connected to external braking unit (MDBUN) with AC drive units of 90 kW and above.
$(+)$, BR	Braking resistor connection	Connected to external braking resistor for AC drive units of 75 kW and below.
U, V, W	AC drive outputs	Connected to a three-phase motor.
$($ Ground (PE)	Grounding connection.	

Cable Dimensions and Tightening Torque

Note

- Data and models recommended in this section are for reference only. The user selected cable diameter must not be larger than the terminal width in the following figures.
- Selection of IEC cables is based on:
- Standards EN 60204-1 and IEC 60364-5-52
- PVC insulation
$-40^{\circ} \mathrm{C}$ ambient temperature and $70^{\circ} \mathrm{C}$ surface temperature
- Symmetrical cable with copper mesh shield
- A maximum of 9 cables are allowed in a cable tray.
- For North America, the recommended cables in the preceding table must be copper wires rated $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$.

Figure 3-1 Terminal dimensions of GT600-4T18.5GB/22GB

Table 3-2 Recommended cable dimensions and tightening torque of GT600-4T18.5GB/22GB

AC Drive Model	Rated Input Current (A)	Power Input/Output Cable	Crimp Terminal Model	Ground Cable	Crimp Terminal Model	Tightening Torque $(\mathrm{N} \cdot \mathrm{m})$	Screw Spec.
GT600- 4T18.5GB	49.5	$3 \times 10 \mathrm{~mm}^{2}$ 3×6 AWG	$8-6$	$10 \mathrm{~mm}^{2}$ 8 AWG	$8-6$	4.0	M6
GT600-4T22GB	59	$3 \times 16 \mathrm{~mm}^{2}$ $3 \times 4 \mathrm{AWG}$	$14-6$	$16 \mathrm{~mm}^{2}$ 8 AWG	$8-6$	4.0	M6

Figure 3-2 Terminal dimensions of GT600-4T30GB/37GB

Table 3-3 Recommended cable dimensions and tightening torque of GT600-4T30GB/GT600-4T37GB

AC Drive Model	Rated Input Current (A)	Power Input/Output Cable	Crimp Terminal Model	Ground Cable	Crimp Terminal Model	Tightening Torque $(\mathrm{N} \cdot \mathrm{m})$	Screw Spec.
GT600-4T30GB	57	$3 \times 16 \mathrm{~mm}^{2}$ 3×4 AWG	$14-\mathrm{L} 6$	$16 \mathrm{~mm}^{2}$ 8 AWG	$8-6$	4.0	M6
GT600-4T37GB	69	$3 \times 25 \mathrm{~mm}^{2}$ 3×3 AWG	$14-\mathrm{L6}$	$16 \mathrm{~mm}^{2}$ 6 AWG	$14-\mathrm{L6}$	4.0	M6

Figure 3-3 Terminal dimensions of GT600-4T45GB/55GB

Table 3-4 Recommended cable dimensions and tightening torque of GT600-4T45GB/GT600-4T55GB

AC Drive Model	Rated Input Current (A)	Power Input/Output Cable	Crimp Terminal Model	Ground Cable	Crimp Terminal Model	Tightening Torque $(\mathrm{N} \cdot \mathrm{m})$	Screw Spec.
GT600-4T45GB	89	$3 \times 35 \mathrm{~mm}^{2}$ 3×2 AWG	$22-8$	$25 \mathrm{~mm}^{2}$ 6 AWG	$14-8$	10.5	M8
GT600-4T55GB	106	$3 \times 50 \mathrm{~mm}^{2}$ $3 \times 1 / 0 \mathrm{AWG}$	$60-8$	$25 \mathrm{~mm}^{2}$ 6 AWG	$14-8$	10.5	M8

Figure 3-4 Terminal dimensions of GT600-4T75GB/GT600-4T90G/GT600-4T110G

Table 3-5 Recommended cable dimensions and tightening torque of GT600-4T75GB/GT6004T90G/ GT600-4T110G

AC Drive Model	Rated Input Current (A)	Input/Output Power Cable	Crimp Terminal Model	Ground Cable	Crimp Terminal Model	Tightening Torque $(\mathrm{N} \cdot \mathrm{m})$	Screw Spec.
GT600-4T75GB	139	$3 \times 70 \mathrm{~mm}^{2}$ $3 \times 2 / 0 \mathrm{AWG}$	$70-12$	$35 \mathrm{~mm}^{2}$ 4 AWG	$22-12$ 35.0 GT600-4T90G 164 $3 \times 95 \mathrm{~mm}^{2}$ $3 \times 3 / 0 \mathrm{AWG}$	$80-12$	$50 \mathrm{~mm}^{2}$ 4 AWG
$22-12$	35.0	M12					
GT600-4T110G	196	$3 \times 120 \mathrm{~mm}^{2}$ $3 \times 4 / 0 \mathrm{AWGI}$	$100-12$	$70 \mathrm{~mm}^{2}$ 3 AWG	$38-12$	35.0	M 12

Figure 3-5 Terminal dimensions of GT600-4T132G/GT600-4T160G

Table 3-6 Recommended cable dimensions and tightening torque of GT600-4T132G/GT600-4T160G

AC Drive Model	Rated Input Current (A)	Power Input/Output Cable	Crimp Terminal Model	Ground Cable	Crimp Terminal Model	Tightening Torque $(N \cdot m)$	Screw Spec.
GT600-4T132G	240	$3 \times 150 \mathrm{~mm}^{2}$ 350 kcmil	$150-12$	$95 \mathrm{~mm}^{2}$ 2 AWG	$38-12$	35.0	M12
GT600-4T160G	287	$3 \times 185 \mathrm{~mm}^{2}$ 500 kcmil	$250-12$	$95 \mathrm{~mm}^{2}$ 2 AWG	$38-12$	35.0	M12

Figure 3-6 Terminal dimensions of GT600-4T200G/220G (without output reactor)

Figure 3-7 Terminal dimensions of GT600-4T200G-L/220G-L (with output reactor)

In Figure 3-7 Terminal dimensions of
T200G-L/220G-L (with output reactor), the side entry copper bar can be removed if necessary. Terminal dimensions of main circuit terminals without side entry copper bar are shown below.

Figure 3-8 Terminal dimensions of GT600-4T200G-L/220G-L (without side entry copper bar, without output reactor)

Table 3-7 Recommended cable dimensions and tightening torque of GT600-4T200G(-L)/220G(-L)

AC Drive Model	Rated Input Current (A)	Power Input/ Output Cable	Crimp Terminal Model	Ground Cable	Crimp Terminal Model	Tightening Torque (N.m)	Screw Spec.
GT600-4T200G(-L)	365	$2 \times(3 \times 95) \mathrm{mm}^{2}$ $4 / 0 \mathrm{AWG} \times 2 \mathrm{P}$	$100-12$	$95 \mathrm{~mm}^{2}$ 1 AWG	$60-12$	35.0	M12
GT600-4T220G(-L)	410	$2 \times(3 \times 120) \mathrm{mm}^{2}$ $300 \mathrm{kcmil} \times 2 \mathrm{P}$	$150-12$	$120 \mathrm{~mm}^{2}$ $1 / 0 \mathrm{AWG}$	$60-12$	35.0	M12

Figure 3-9 Terminal dimensions of GT600-4T250G/280G (without output reactor)

Figure 3-10 Terminal dimensions of GT600-4T250G-L/280G-L (with output reactor)

In Figure 3-10 Terminal dimensions of

T250G-L/280G-L (with output reactor), the side entry copper bar can be removed if necessary. Terminal dimensions of main circuit terminals without side entry copper bar are shown below.

Figure 3-11 Terminal dimensions of GT600-4T250G-L/280G-L (without side entry copper bar, without output reactor)

Table 3-8 Recommended cable dimensions and tightening torque of GT600-4T250G(-L) and GT600-4T280G(-L)

AC Drive Model	Rated Input Current (A)	Power Input/ Output Cable	Crimp Terminal Model	Ground Cable	Crimp Terminal Model	Tightening Torque $(\mathrm{N} \cdot \mathrm{m})$	Screw Spec.
GT600-4T250G(-L)	441	$2 \times(3 \times 120) \mathrm{mm}^{2}$ $300 \mathrm{kcmil} \times 2 P$	$150-12$	$120 \mathrm{~mm}^{2}$ $1 / 0 \mathrm{AWG}$	$60-12$	35.0	M12
GT600-4T280G(-L)	495	$2 \times(3 \times 150) \mathrm{mm}^{2}$ $400 \mathrm{kcmil} \times 2 P$	$200-12$	$150 \mathrm{~mm}^{2}$ $1 / 0 \mathrm{AWG}$	$60-12$	35.0	M12

Figure 3-12 Terminal dimensions of GT600-4T315G/450G (without output reactor)

Figure 3-13 Terminal dimensions of GT600-4T315G-L/450G-L (with output reactor)

In Figure 3-13, the side entry copper bar can be removed if necessary. Terminal dimensions of main circuit terminals without side entry copper bar are shown below.

Figure 3-14 Terminal dimensions of GT600-4T315G-L/450G-L (without side entry copper bar, without output reactor)

Table 3-9 Recommended cable dimensions and tightening torque of GT600-4T315G(-
L)/ $355 \mathrm{G}(-\mathrm{L}) / 400 \mathrm{G}(-\mathrm{L}) / 450 \mathrm{G}(-\mathrm{L})$

AC Drive Model	Rated Input Current (A)	Power Input/ Output Cable	Crimp Terminal Model	Ground Cable	Crimp Terminal Model	Tightening Torque $(\mathrm{N} \cdot \mathrm{m})$	Screw Spec.
GT600-4T315G(-L)	565	$2 \times(3 \times 185) \mathrm{mm}^{2}$ $500 \mathrm{kcmil} \times 2 \mathrm{P}$	$250-16$	$185 \mathrm{~mm}^{2}$ $2 / 0 \mathrm{AWG}$	$70-16$	85.0	M 16
GT600-4T355G(-L)	617	$2 \times(3 \times 185) \mathrm{mm}^{2}$ $500 \mathrm{kcmil} \times 2 \mathrm{P}$	$250-16$	$185 \mathrm{~mm}^{2}$ $2 / 0 \mathrm{AWG}$	$70-16$	85.0	M16
GT600-4T400G(-L)	687	$2 \times(3 \times 240) \mathrm{mm}^{2}$ $600 \mathrm{kcmil} \times 2 \mathrm{P}$	$325-16$	$240 \mathrm{~mm}^{2}$ $3 / 0 \mathrm{AWG}$	$80-16$	85.0	M16
GT600-4T450G(-L)	782	$2 \times(3 \times 240) \mathrm{mm}^{2}$ $600 \mathrm{kcmil} \times 2 \mathrm{P}$	$325-16$	$240 \mathrm{~mm}^{2}$			
$3 / 0 \mathrm{AWG}$							

Crimp Terminal Recommendation
The user can select crimp terminal in the local market according to dimensions in the table below (For North America, the crimp terminal selected must comply with the UL certification).

Table 3-10 Models and dimensions of the JST crimp terminal above

Model	Dimensions (mm)								Crimping Tool No.
	d2 (Min.)	B (Max.)	L	F	E	D	d1	T	
8-6	6.4	12.0	23.8	9.3	8.5	7.1	4.5	1.2	YA-4
14-6	6.4	12.0	29.8	13.3	10.5	9.0	5.8	1.5	YA-4
14-L6	6.4	16.0	32.8	14.5	10.5	9.0	5.8	1.5	YA-4

Model	Dimensions (mm)								Crimping Tool No.
	d2 (Min.)	B (Max.)	L	F	E	D	d1	T	
$14-8$	8.4	16.0	32.8	14.5	10.5	9.0	5.8	1.5	YA-4
$22-8$	8.4	16.5	33.7	13.5	12.0	11.5	7.7	1.8	YA-5
$22-12$	13.0	22.0	42.5	19.5	12.0	11.5	7.7	1.8	YA-5

Table 3-11 Models and dimensions of the JST crimp terminal above

Model	Cimensions (mm)								Crimping
	Tool No. (Min.)	B (Max.)	L	F	E	D	d1	T	
$38-12$	13.0	22.0	42.7	17.7	14.0	13.3	9.4	1.8	YA-5
$60-8$	8.4	22.0	49.7	20.7	18.0	15.5	11.4	2.0	YA-5
$70-12$	13.0	24.0	51.0	20.0	19.0	17.5	13.3	2.0	YPT-150-1
$80-12$	13.0	27.0	54.2	20.7	20.0	19.5	14.5	2.3	YPT-150-1
$100-12$	13.0	28.5	55.6	20.4	21.0	22.3	16.4	2.6	YPT-150-1

Table 3-12 Models and dimensions of the JST crimp terminal above

Model	Crimping Tool No.								
	d2 (Min.)	B (Max.)	L	F	E	D	d1	T	
$150-12$	13.0	36.0	66.0	23.0	27.0	26.5	19.5	3.2	YPT-150-1
$200-12$	13.0	44.0	72.0	24.5	31.5	32.7	24.0	4.0	YF-1, YET-300-1
$250-12$	13.0	44.0	78.0	24.5	31.5	35.6	26.0	4.5	YF-1, YET-300-1
$250-16$	17.0	44.0	78.0	24.5	31.5	35.6	26.0	4.5	YF-1, YET-300-1
$325-16$	17.0	50.5	88.0	33.5	35.5	37.6	28.0	4.5	YF-1, YET-300-1

3.22 Main Circuit Cable Recommendations

- Main Circuit Cable Selection

K\&R recommends symmetrical shielded cable as main circuit cable, which can reduce electromagnetic radiation of entire conductive system compared with four- conductor cable
For more details, see descriptions in section A.1.7 shielded Cable.

- Power Input
- There are no phase sequence requirements for three-phase cable connections.
- Specification and installation of all external power cables must comply with local safety regulations and relevant IEC standards.
- Install filter close to power input side of the AC drive with cable shorter than 30 cm . Connect the ground terminal of filter and the ground terminal of the drive together to the cabinet main grounding terminal.

DC Bus Terminals

- DC bus terminals, labeled (+) and (-), are terminals that carry a residual voltage for a period after the drive has been switched off.
- To avoid risk of equipment damage or fire, when you select an external braking unit for use with an AC drive of 90 kW and above, DO NOT reverse the poles (+) and (-).
- Use a cable not exceeding 10 m to connect DC bus terminals to external MDBUN braking unit. Use twisted pair wires or close pair wires for this connection.
- Fire risk! Do not connect braking resistor directly to DC bus.

Braking Resistor

$\triangle \Delta_{\text {canton }}$

- Fire risk! Fit overtemperature sensors or thermal overload relay to the braking resistor, and use double insulated cables for the dynamic brake circuit to the brake resistors.
- Braking resistor terminals (+) and PB are only for the drive units up to 75 kW that are fitted with an internal braking unit.
- To avoid risk of equipment damage, use a cable not exceeding 5 m to connect an external braking resistor.
- To avoid risk of ignition due to overheating of the braking resistor, do not place anything combustible around the braking resistor.
- Set F6-15 (Braking use ratio) and F9-08 (Braking unit action initial voltage) correctly according to load after connecting braking resistor to the drive of up to 75 kW that is fitted with an internal braking unit.

AC Drive Outputs U, V, W to Motor

The Cable Support Bracket is an optional accessory which provides mechanical support for input, output and dynamic brake cables and which also provides grounding clamps for the screen/shield of the cables. Installation of the bracket is shown below.

Table 3-13 Cable support bracket models

Cable Support Bracket Model	Applicable Drive Model
GT600-AZJ-A2T5	GT600-4T18.5GB
	GT600-4T22GB
GT600-AZJ-A2T6	GT600-4T30GB
	GT600-4T37GB
GT600-AZJ-A2T7	GT600-4T45GB
	GT600-4T55GB
GT600-AZJ-A2T8	GT600-4T75GB
	GT600-4T90G
	GT600-4T110G
GT600-AZJ-A2T9	GT600-4T132G
	GT600-4T160G

- Cable specification and installation of all cables connected to the drive output U, V, W must comply with local safety regulations and relevant IEC standards.
- To avoid risk of equipment damage or operating faults, do not connect capacitor or surge absorber to the output side of the AC drive.
- Long motor cables can contribute to electrical resonance caused by distributed capacitance and inductance. In some cases, this might cause equipment damage in the drive, in motor or in cables. To avoid these problems, install an AC output reactor close to the drive if cable is longer than about 100 m .
- If the cable support bracket is not used, screen/shield has to be directly grounded to the grounding (PE) terminal. Ensure pig tail of screen/shield is as short as possible.

Grounding (PE) Connection

WARNING
Electrical Shock Hazard. Ensure the protective earthing conductor complies with technical standards and local safety regulations. Because the leakage current exceeds 3.5 mA in all models, IEC 61800-5-1 states that either the power supply must be automatically disconnected in case of discontinuity of the protective earthing conductor or a protective earthing conductor with a cross-section of at least $10 \mathrm{~mm}^{2}(\mathrm{Cu})$ or $16 \mathrm{~mm}^{2}(\mathrm{Al})$ must be used. Failure to comply may result in death or serious injury.

- For personal safety and reliability of the equipment, it is important to connect ground (PE) terminal to an effective electrical ground. Resistance value of the ground cable must be less than 10Ω.
- Do not connect the grounding (PE) terminal of the drive to neutral conductor of the power system.
- Protective grounding conductor must be able to carry large short-term current that might arise if a fault occurs.
- Use proper grounding cable with yellow/green insulation for protective grounding conductor.
- Ground the shield.
- It is recommended that the drive be installed on a metal mounting surface.
- Install filter and drive on the same mounting surface and ensure filtering effect.

Main Circuit Cable Protection

Add heat shrink tube to cable lug cooper tube and cable core part of main circuit cable and ensure the heat shrink tube completely covers the cable conductor part, as shown in the following figure.

Power Input Protection

- Install protection devices (a fuse and a MCCB) at power input to the drive. The protection devices must provide protection on overcurrent and short-circuit, and be able to completely isolate the drive from the electrical power input.
- Cables and protection device on power input must be suitably rated for the power and voltage class of the drive under normal conditions, and under possible fault conditions such as system overload and short-circuit on the power input.

Power Grid System

- The drive is applicable to system with neutral point grounded.

If the drive is used in an IT power system with an ungrounded power system or a high resistance grounded [over 30 ohms] power system, it is necessary to remove both VDR and EMC screws as shown in Figure 3-16. Do not install a filter. Failure to comply may result in personal injury or damage to the drive.

- If a residual-current device (RCD) is used and it trips at start, remove the EMC screw as shown in Figure 3-16.

Figure 3-16 EMC screw and VDR screw

3.3 Control Circuit Wiring

3.3.1 Control Circuit Terminals

Terminal Arrangement
Figure 3-17 Control circuit terminal arrangement

- Terminal Function

Type	Terminal		Name	Description
Power supply	+ +10V	GND	+10 V power supply	Provides +10 V power supply to an external unit. Generally used to supply an external potentiometer of 1 to $5 \mathrm{k} \Omega$ Max. output current: 10 mA
		+24 V	COM	+24 V power supply

Type	Terminal		Name	Description						
Digital outputs	DO1	CME	Digital output 1	Optically-coupled isolation, dual-polarity open-collector output Output voltage range: 0 to 24 V Output current range: 0 to 50 mA. Note that CME and COM are internally insulated, but are shorted externally by a jumper. In this case, DO1 is driven by +24 V by default. Remove the jumper link if you need to apply external power to DO1.						
	FM	COM	High-speed pulse output	Controlled by F5-00 (FM terminal output selection). Max. output frequency: 100 kHz. When used as an open-collector output,						
the specification is the same as for DO1.					$	$	Relay outputs	T/A	T/B	Normally-closed (NC) terminal
:---	:---	:---	:---							

3.32 Wiring Diagrams

- Selection of Control Circuit Wirings

All control wirings must be shielded.
For different analog signals, use independent shielded cables and do not use the same shield.

For digital signals, shielded twisted pair (STP) cable is recommended.

Cabling Requirements

- Motor cables must be segregated from control wiring to minimize electrical interference from the PWM effects of the motor cable.
- Do not run motor cables, power input cables and control wirings in the same duct to avoid electromagnetic interference caused by coupling of these cables.
- If control wiring must run across power cable, ensure they are arranged at an angle of 90°.

The recommended cabling diagram is as follows:

Wiring of Al1
Analog signals at low levels can suffer from effects of external interference. To reduce this effect, it is important to use shielded cables shorter than 20 m long to carry analog signals.

Figure 3-18 Wiring for analog input 1

In applications where analog signals suffer from effects of severe external interference, install a filter capacitor or a ferrite magnetic core at source of analog signal. The pig tail of the shield must be connected to the PE terminal on the drive.

Figure 3-19 Connect shield to the PE terminal of the drive

Wiring of Al2
When you select voltage input via Al2, use the same wiring method as Al1. When you select current input via AI2, set jumper J9 to the I side.

Figure 3-20 Wiring for analog input 2

- Wiring of DI1 to DI5
- SINK wiring

Figure 3-21 Wiring in SINK mode

Internal 24 V power supply is applied.

External 24 V power supply is applied.

Applying internal 24 V power supply is the most commonly used wiring mode. In this mode, short terminals +24 V and OP and connect COM to external power OV.

To apply external 24 V power supply, remove the jumper between terminals +24 V and OP, and between terminals COM and CME. Connect positive side of external power 24 V to OP , and external power 0 V to corresponding DI terminal via contact on external controller.

In SINK mode, do not connect DI terminals of different AC drives in parallel, otherwise, a digital input fault will occur. If it is necessary to connect different AC drives in parallel, connect a diode in series at digital input. The diode characteristics must satisfy the following requirements:

- IF: > 40 mA
- VR: $>40 \mathrm{~V}$

Figure 3-22 Parallel connection of DI terminals in SINK mode

- Source wiring

Figure 3-23 Wiring in SOURCE mode

If you intend to use internal power supply of the drive, remove the jumper between terminals +24 V and OP. Connect +24 V to the common port of external controller, and connect terminal OP to terminal COM.

If you intend to use an external power supply, remove the jumper between terminals +24 V and OP . Connect external power 0 V to terminal OP , and the positive side of external power +24 V to corresponding DI terminal via contact on external controller.

Wiring of DI5 (High-speed Pulse Input)
As high speed pulse input terminal, DI5 allows maximum frequency input of 100 kHz .
Figure 3-24 Wiring of high-speed pulse input terminal

Pulse output device

- Wiring of DO

When digital output terminal must drive relay, it is necessary to install an absorption diode across relay coil. This diode prevents inductive switching transients causing damage to the DC 24 V power supply. The absorption diode must have a forward current rating of 50 mA .

Figure 3-25 Wiring of digital output terminal

- Be careful to install absorption diode with correct polarity, to prevent damage to the 24 VDC power supply.
- CME and COM are internally insulated, but are shorted externally by a jumper. In this case, DO1 is driven by+24 V by default. Remove the jumper if you need to drive DO1 by an external power supply.

Wiring of High-speed Output FM
When the FM terminal is used for continuous pulse output, maximum output frequency is 100 kHz .

Figure 3-26 Wiring of high-speed output terminal FM

Wiring of Relay
To smooth peak voltage that results from cutting off power to inductive load (relay, contactor and motor), use a voltage dependent resistor (VDR) at the relay contact and add absorbing circuit to the inductive load, such as VDR, RC absorbing circuit ordiode.

Figure 3-27 Wiring of relay

Wire Size and Torque Specification
Please use a ferrule-type terminal with insulated sleeves. Prepare wire ends with insulated sleeves before connecting to the drive. See Figure 3-28 Ferrule dimensions below.

Figure 3-28 Ferrule dimensions

Table 3-14 Wire size and torque specification

Terminal Block	Single Wire $\left(\mathrm{AWG} / \mathrm{mm}^{2}\right)$	Twisted Wire $\left(\mathrm{AWG} / \mathrm{mm}^{2}\right)$	Tightening Torque $(\mathrm{N} \cdot \mathrm{m})$
Control circuit	AWG 24 to $18\left(0.2\right.$ to $\left.0.75 \mathrm{~mm}^{2}\right)$		0.8 to 1.0

3.4 Wiring Checklist

$\square V$	No.	Item
\square	1	Check that you receive a correct model .
\square	2	Ensure correct peripheral devices (braking resistor, braking unit, AC reactor, filter and breaker) are used.
\square	3	Check optional cards.
\square	4	Check that mounting method and location meet the requirements.
\square	5	Check power supply input is within specification, e.g. 380/400/415/440/460/480 VAC.
\square	6	Check that rated motor voltage matches the drive output specification.
\square	7	Connect power supply to the R, S, T terminals of the drive properly.
\square	8	Connect motor cables to the U, V, W terminals of the drive properly.
\square	9	Check that cable diameter of main circuit complies with specification.
\square	10	Ground the AC drive properly.
\square	11	Check that output terminals and control signal terminals are connected securely and reliably.
\square	12	Check whether more than one motors are driven. If yes, consider whether to add a thermal relay.
\square	13	When using braking resistor and braking unit, check whether they are wired properly and whether their resistance value is proper.
\square	14	Use shielded twisted pair (STP) cables as signal lines.
\square	15	Connect optional cards correctly.
\square	16	Segregate control wiring from power supply and motor cables.
\square	17	Decrease FO-15 (carrier frequency) if motor output cable exceeds 50 m.

4.1 Introduction 72
4.2 Inbuilt LED Operating Panel 72

Chapter 4 Operating Panel (Keypad \& Display)

4.1 Introduction

The AC drive has an inbuilt programming/operating panel with LED indicators and display. It allows you to operate function parameters and monitor/control system status.
Remote/external operating panel is available as an option (refer to Chapter 8 Peripherals and Options). GT32NKE1 is an LED version with identical functions to the inbuilt version.

4.2 Inbuilt LED Operating Panel

The LED operating panel allows you to monitor system operation, modify parameters and start or stop the AC drive.

Figure 4-1 Details of the operating panel

Keys on LED Operating Panel

Key	Key Name	Function
PRG	Programming	- -
Enter or exit Level I menu.		
	Confirm to the previous menu.	

- Relevant Parameters for Operating Panel Setting

Function Code	Parameter Name	Setting Range	Default
F7-01	MF.K key function selection	0: MF.K key disabled 1: Switchover from remote control (terminal or communication) to keypad control 2: Switchover between forward rotation and reverse rotation 3: Forward jog 4: Reverse jog	0
F7-02	STOP/RESET key function	0: STOP/RESET key enabled only in keypad control 1: STOP/RESET key enabled in any operation mode	1
FP-03	Parameter display property	For user defined and user modified parameters 00: non of them will display 01: user defined parameters will display 10: user modified parameters will display 11: both of them will display	00

Status Indicators

There are four red LED status indicators at the top of the operating panel.

Indicator	Indication
RUN RUN	OFF indicates the STOP status.
	ON indicates the RUNNING status.
	OFF indicates under operating panel control.
	ON indicates under terminal control.
	FLASHING indicates under serial communication control.
TUNETC	OFF indicates reverse motor rotation.
	ON indicates forward motor rotation.

Unit Indicators
There are three red unit indicators below the data display. These indicators operate individually or in pairs to show the units used to display data, as shown in Figure 4-2.

Figure 4-2 Unit indicator explanation

Indicator appearance	Meaning
$\mathrm{Hz} \quad \mathrm{RPM} \longrightarrow \mathrm{~S}^{\mathrm{A}} \%$	Hz for frequency
$\mathrm{Hz}_{\mathrm{O}} \text { _RPM— }{ }^{A}$	A for current
	V for voltage
$\mathrm{Hz}_{\mathrm{Z}}^{\mathrm{RPM}} \mathrm{C}^{\mathrm{A}} \% \mathrm{~V}$	RPM for motor speed
	Percentage

LED Display

The five-digit LED data display can show the following range of information:

- Frequency reference
- Output frequency
- Monitoring information
- Fault code

The following table lists indication of LED display.

LED Display	Indication						
\bigcirc	0	6	6	[C	Π	N
1	1	7	7	ᄃ	c	\bigcirc	P
2	2	8	8	d	D	r	R
3	3	9	9	E	E	F	T
4	4	R	A	F	F	U	U
5	5, S	b	B	L	L	\sqcup	u

4.2.1 LED Operating Panel Menu Structure

The drive operating panel has three levels of menu:

1. Level I - function parameter group
2. Level II - function parameter
3. Level III - function parameter value

Figure 4-3 Structure of three levels of menu

Operation procedure of the three levels of menu is as follows:

The following example shows how to modify F3-02 from 10.00 Hz to 15.00 Hz .

Press enter from a Level III menu to:

1. Save the parameter value you have set
2. Return to Level II menu, and then
3. Select the next function parameter.

Press PRG from a Level III menu to:

1. Return to Level II menu without saving the parameter value, and remain at the current function code.

- Unmodifiable Parameters

When operating in Level III menus, if the parameter does not include a flashing digit, then it is not possible to modify that parameter. There are two possible reasons for this:

1. The function parameter you have selected is read-only. This is because:

The display is showing the AC drive model.
The display is showing an actual parameter detected by the system.
The display is showing a running record parameter.
2. The displayed function parameter cannot be modified while the AC drive is in the RUNNING status. You can modify these types of parameter only when the AC drive is in the STOP status.

Overall Arrangement of Function Parameters

Function Code Group	Description	Standard Function Parameters
F0 to FP	Standard function code group	Standard function parameters
A0 to AC	Advanced function code group	AI/AO correction
U0 to U3	RUNNING status function code group	Display of basic parameters

- Selection of Function Parameter Group

Figure 4-4 Selection of function parameter group

Selection of Displaying A and U Groups
The value you set for function parameter FP-02 determines whether the operating panel displays groups U and A .

Value of FP-02	Group A	Group U
00	Not displayed	Not displayed
01	Not displayed	Displayed
10	Displayed	Not displayed
11 (default)	Displayed	Displayed

4.2.3 Function Parameter Operations

Viewing Function Parameters

The drive provides three display modes for viewing parameters, described in Table 4-1.
Table 4-1 Function parameter display modes

Function Code Display Mode	Parameter Name	Setting Range
Base mode	$-6 R 5 E$	Show all function parameters in sequence
User-defined quick-view mode	- -UF_	The user can define up to 30 function parameters to include into function group FE.
User-modified quick-view mode	$-[-$	The function parameters that have been modified by a user are shown here.

Press ouck to cycle through three function parameter display modes. In each mode, the method you use to view and modify parameter value is the same as shown in Figure 4-3.
Figure 4-5 Switching between three function parameter display modes

The value you set for function parameter FP-03 determines whether the operating panel displays quick-view user-defined and quick-view user-modified function groups. The base mode is always displayed.

Table 4-2 Setting FP-03 to select quick-view display modes

Value of FP-03	User-modified Group	User-defined Group
00	Not displayed	Not displayed
01	Not displayed	Displayed
10	Displayed	Not displayed
11 (default)	Displayed	Displayed

The following table lists the often used parameters in the user-defined menu.
Table 4-3 Often used parameters in the user-defined menu

Function Code	User-defined Function Code	Parameter Name	Function Code	User-defined Function Code	Parameter Name
FE-00	F0-01	Motor 1 control mode	FE-01	F0-02	Command source selection
FE-02	F0-03	Main frequency reference setting channel selection	FE-03	F0-07	Frequency source calculation selection
FE-04	F0-08	Preset frequency	FE-05	F0-17	Acceleration time
FE-06	F0-18	Deceleration time	FE-07	F3-00	V/F curve setting
FE-08	F3-01	Torque boost	FE-09	F4-00	DI1 function selection
FE-10	F4-01	DI2 function selection	FE-11	F4-02	DI3 function selection
FE-12	F5-04	DO1 function selection	FE-13	F5-07	AO1 function selection
FE-14	F6-00	Start mode	FE-15	F6-10	Stop mode

If a function code in group FE is set to F0.00, it indicates that no parameter is defined by the user. If uHiLL is displayed after you press (ouck, it indicates that the user-defined menu is empty.

Editing Function Parameters

This editing method is mostly used in on-site commissioning.

- Pressing Δ and ∇ in Level I menu is to quickly change function parameter group.
- Pressing \triangle and ∇ in Level II menu is to quickly increase or decrease function parameter number.
- Pressing Δ and ∇ in Level III menu is to quickly increase or decrease function parameter value. To save parameter setting, press . To cancel parameter setting, press prg.

4.2.4 MF.K Key Function

Function of the MF.K key on the LED operating panel can be set via function parameter F701. You can switch over command source or frequency reference direction of the drive, and implement forward/reverse jog through this key in either STOP or RUNNING status.

Function Code	Parameter Name	Setting Range	Description	Default
F7-01function selection	0: Disabled	The key has no function. between operating panel and terminal/ communication	F0-02 = 0, there is no effect after you press the F0-02 = 1, command source can be switched over between terminal and operating panel through the key.	
		F0-02 = 2, command source can be switched over between communication and operating panel through the		

4.2.5 Saving and Restoring Settings

After you change value of any function parameter, the drive saves the new value locally so that it remains effective when you power on the drive next time. The drive also retains alarm information and cumulative running time data.

The drive allows you to make a separate external backup of parameter settings. This feature allows you to load a set of parameter settings during commissioning, or to restore a set of parameter settings after completing a maintenance or repair operation on the drive.

You can also restore default parameter settings, or clear running data by using function parameter FP-01.

Function Code	Parameter Name	Setting Range	Default
FP-01	Parameter initialization	0: No operation	0
		1: Restore default settings except motor parameters	
		501: Restore user's backup parameters	

4.2.6 Password Security

The AC drive provides a security protection function that requires a user-defined password. Function parameter FP-00 controls this function.

When FP-00 has the default value zero, it is not necessary to enter a password to program the $A C$ drive.

To enable password protection, do as follows:

1. Set a non-zero value for FP-00. This value is the user-defined password.
2. Make a written note of the value you have set for FP-00 and keep the note in a safe location.
3. Press to exit the function parameter editing mode.

The password protection is successfully enabled. Then when you press PRG , the display shows " ----- ". You must enter the correct password to enter the programming menu.

To remove password protection, do as follows:

1. Use the current password to enter the function parameter editing mode.
2. Set FP-00 to zero.
3. Press envisy to exit the function parameter editing mode.

The password protection is successfully removed.
The following figure gives an example, showing how to set the password to 12345 .

5. Quick Setup

5.1 Get Familiar With Operating Panel.. 86
5.2 Setup Flowchart.. 87

Chapter 5 Quick Setup

5.1 Get Familiar With Operating Panel

Before any commissioning work, you must go back to chapter 4 to get acquainted with the operating panel first. The operating panel allows you to monitor system operation, modify parameters and start or stop the AC drive.

5.2 Setup Flowchart

START	Para.	Parameter name	Default	Commission
Before power on				
Install and wire the drive		Install and wire the drive as explained in chapters 1 to 3 .		
Check wirings		-		
of power supply and AC drive outputs				
Restore parameters	FP-01	Parameter initialization	0	
\checkmark		0: No operation 1: Restore default settin 2: Clear records includin 4: Back up parameters 501: Restore user's backur NOTE: It is recommend to commissioning the A	motor param eters tore default	ettings" prior
Set motor parameters		Motor Nameplate		
		TYPE: Y90S-2 POLES: 2 VOLT(V): 380 AMP $(A): 3.4$ RPM: 2800 SERIAL NO:	ON MO RAME: \qquad $\begin{array}{rl}2 & \mathrm{HP} \\ \mathrm{Hz} & \frac{50}{} \\ \mathrm{NN}: & Y \\ \text { GS: } & 6205\end{array}$ VTS: 22	TOR \qquad KW INS: \qquad F P: \qquad KG
	F1-01	Rated motor power	model dependent	1.5
		Unit: kW		
	F1-02	Rated motor voltage	model dependent	380
		Unit: V		
	F1-03	Rated motor current	model dependent	3.4
		Unit: A		
	F1-04	Rated motor frequency	model dependent	50
		Unit: Hz		
	F1-05	Rated motor speed	model dependent	2800
		Unit: rpm.		
CONTINUE	Para.	Parameter name	Default	Commission

CONTINUE	Para.	Parameter name	Default	Commission
Select control mode	F0-01	Motor 1 control mode	0	
		0: SVC control 1: FVC control 2: V/F control		
Select frequency reference setting channel	F0-03	Main frequency reference setting channel selection	0	
If $\mathrm{FO}-08$ is frequency reference		0: Digital setting F0-08 (pressing F0-08 easily, and the revised value won't be cleared even after power off) 1: Digital setting F0-08 (pressing or can change F0-08 easily, but the revised value would be cleared after power off) 2: Al1 3: Al2 4: Al3 5: Pulse setting (DI5) 6: Multi-reference setting 7: Simple PLC 8: PID 9: Communication setting		
Set F0-08	F0-08	Preset frequency	50.00	
If Al1 is frequency reference		0 Hz to F0-10		
Set Al1	F4-13	Al curve 1 minimum input	0.00	
		0 V to F4-15;		
	F4-14	Corresponding percentage of Al1 minimum input	0.0	
		-100.0\% to 100.0\%		
	F4-15	Al1 maximum input	10.00	
		F4-13 to 10.00 V		
\downarrow	F4-16	Corresponding percentage of Al1 maximum input	100.0	
If AI2 is frequency reference		-100.0\% to 100.0\%		
Set AI2	F4-18	Al curve 2 minimum input	0.00	
		0 V to F4-20;		
	F4-19	Corresponding percentage of AI2 minimum input	0.0	
		-100.0\% to 100.0\%		
	F4-20	Al2 maximum input	10.00	
		F4-18 to 10.00 V		
\checkmark	F4-21	Corresponding percentage of AI2 maximum input	100.0	
		-100.0\% to 100.0\%		
CONTINUE	Para.	Parameter name	Default	Commission

CONTINUE
Para. Parameter name Default Commission

If Al 3 is frequency reference

Set AI3
\downarrow
If multi-reference is frequency
reference

F4-23	Al curve 3 minimum input	0.00	
	0 V to F4-25;		
F4-24	Corresponding percentage of AI3 minimum input	0.0	
	-100.0\% to 100.0\%		
F4-25	Al3 maximum input	10.00	
	F4-23 to 10.00 V		
F4-26	Corresponding percentage of AI3 maximum input	100.0	
	-100.0\% to 100.0\%		
FC-00	Reference 0	0.0	
	0.0 to 100.0\%.		
$\begin{aligned} & \text { FC-01 } \\ & \text { to } \\ & \text { FC-15 } \end{aligned}$	Reference 1-15	0.0	
	0.0 to 100.0\%.		
Para.	Parameter name	Default	Commission

CONTINUE	Para.	Parameter name	Default	Commission
If any digital input is used				
Set DI function	F4-00	DI1 function selection	1	
		0 : No function		
		1: Forward RUN (FWD)		
		2: Reverse RUN (REV)		
		3: Three-wire control		
		4: Forward JOG (FJOG)		
		5: Reverse JOG (RJOG)		
		6: Terminal UP		
		7: Terminal DOWN		
		8: Coast to stop		
		9: Fault reset (RESET)		
		10: RUN pause		
		11: External fault normally open (NO) input		
		12: Multi-reference terminal 1		
		13: Multi-reference terminal 2		
		14: Multi-reference terminal 3		
		15: Multi-reference terminal 4		
		16: Terminal 1 for acceleration/deceleration time selection		
		17: Terminal 2 for acceleration/deceleration time selection		
		18: Frequency source switchover		
		19: UP and DOWN setting clear (terminal, keypad)		
		20: Command source switchover terminal 1		
		21: Acceleration/Deceleration prohibited		
		22: PID pause23: PLC status reset		
		24: Swing pause25: Counter input		
		26: Counter reset27: Length count input		
		28: Length reset29: Torque control prohibited		
		30: Pulse input (enabled only for DI5)31: Reserved		
		32: Immediate DC injection braking		
\checkmark				
CONTINUE	Para.	Parameter name	Default	Commission

CONTINUE

Para. Parameter name Default Commission

F4-00	DI1 function selection	1	
	33: External fault norm 34: Frequency modific 35: PID action directio 36: External STOP ter 37: Command source 38: PID integral disabl 39: Switchover betwee preset frequency 40: Switchover betwee preset frequency 41: Motor selection ter 42: Motor selection te 43: PID parameter sw 44: User-defined fault 45: User-defined fault 46: Speed control/Torq 47: Emergency stop 48: External STOP ter 49: Deceleration DC in 50: Clear the current r 59: Reserved Setting range:0 to 59;	NC) en ermin uenc reque witch ing 51-	rce X and source Y and
F4-01	DI2 function selection	4	
	Setting range same as DI1.		
F4-02	DI3 function selection	9	
	Setting range same as DI1.		
F4-03	DI4 function selection	12	
	Setting range same as DI1.		
F4-04	DI5 function selection	13	
	Setting range same as DI1;		
F4-05	DI6 function selection	0	
	Setting range same as DI1;		
F4-06	DI7 function selection	0	
	Setting range same as DI1;		
F4-07	DI8 function selection	0	
	Setting range same as DI1		
F4-08	DI9 function selection	0	
	Setting range same as DI1.		
F4-09	DI10 function selection	0	
	Setting range same as DI1;		

CONTINUE	Para.	Parameter name	Default	Commission
If any digital output is used				
Set DO function	F5-00	FM output mode selection	0	
		0: FM terminal outputs pulses, the frequency of which represents the value of variable which is assigned by F5-06. 1: FM terminal outputs switch signal, the value of which represents the status of variable which is assigned by F5-01		
	F5-01	FM (switch signal) function selection		
		0 : No output 1: AC Drive running 2: Fault output 3: Frequency-level detection FDT1 output 4: Frequency reached 5: Zero-speed running (no output at stop) 6: Motor overload pre-warning 7: AC drive overload pre-warning 8: Set count value reached 9: Designated count value reached 10: Length reached 11: PLC cycle completed 12: Accumulative running time reached 13: Frequency limited 14: Torque limited 15: Ready for RUN 16: Reserved 17: Frequency upper limit reached 18: Frequency lower limit reached (no output at stop) 19: Undervoltage status output 20: Communication setting 21,22: Reserved 23: Zero-speed running 2 (having output at stop) 24: Accumulative power-on time reached 25: Frequency level detection FDT2 output		
CONTINUE	Para.	Parameter name	Default	Commission

CONTINUE	Para.	Parameter name	Default	Commission
If any digital output is used				
Set DO function	F5-01	FM (switch signal) function selection	0	
		26: Frequency 1 reached 27: Frequency 2 reached 28: Current 1 reached 29: Current 2 reached 30: Timing duration reached 31: Al1 input limit exceeded 32: Load lost 33: Reverse running 34: Zero current status 35: IGBT temperature reached 36:Software current limit exceeded 37: Frequency lower limit reached (having output at stop) 38: Alarm output 39: Motor overheat warning 40: Current running time reached 41: Fault output (no output at undervoltage)		
	F5-02	Relay function selection (T/A-T/B-T/C)	2	
		Setting range same as FM;		
	F5-03	Relay function selection (P/A-P/B-P/C)	0	
		Setting range same as FM; the relay P/A-P/B-P/C is on extension I/O card.		

Para. Parameter name
Default Commission

CONTINUE	Para.	Parameter name	Default	Commission
if it is VF control				
Set VF parameters	F3-00	V/F curve selection	0	
		0: Linear V/F 1: Multi-point V/F 2: Square V/F 3: 1.2-power V/F 4: 1.4-power V/F 6: 1.6-power V/F 8: 1.8-power V/F 9: Reserved 10: V/F complete separation 11: V/F half separation SETTING RANGE: 0 to 11;		
	F3-01	Torque boost	0.0	
		NOTE: if it is 0 , then auto torque boost is activated, and it is recommended to use auto torque boost.		
	F3-02	Frequency limit of torque boost	50.00	
		0.00 Hz to maximum output frequency		
	F3-03	Multi-point V/F frequency 1	0.00	
		0.00 Hz to F3-05		
	F3-04	Multi-point V/F voltage 1	0.0	
		0.0 to 100.0 V		
	F3-05	Multi-point V/F frequency 2	0.00	
		F3-03 to F3-07, Hz		
	F3-06	Multi-point V/F voltage 2	0.0	
		0.0 to 100.0 V		
	F3-07	Multi-point V/F frequency 3	0.00	
		F3-05 to rated motor frequency F1-04, Hz		
	F3-08	Multi-point V/F voltage 3	0.0	
		0.0 to 100.0 V		
Trial RUN		Use operating panel, or digital input terminal, or serial communication control, to start AC Drive, check if the running performance satisfies your application. If yes, then go forward to next step, if NO, then go back to check.		
CONTINUE	Para.	Parameter name	Default	Commission

CONTINUE	Para.	Parameter name	Default	Commission
if it is SVC or FVC control				
Adjust speed loop parameters	F2-00	Speed loop proportional gain 1	30	
To achieve better performance		0 to 100.		
	F2-01	Speed loop integral time 1	0.5	
		0.01 to 10.00 Sec.		
	F2-02	Switchover frequency 1	5.00	
		0.00 Hz to F2-05		
	F2-03	Speed loop proportional gain 2	20	
		0 to 100.		
	F2-04	Speed loop integral time 2	1.0	
		0.01 to 10.00 Sec.		
	F2-05	Switchover frequency 2	10.00	
		F2-02 to maximum output frequency		
Finish				

6.1 Start/Stop Command Source 100
6.2 Set Frequency Reference 108
6.3 Start/Stop the AC Drive 135
6.4 Motor Auto-tuning 142
6.5 Control Performance 146
6.6 Protections 157
6.7 Monitoring 165
6.8 Process Control 172
6.9 Control Circuit Terminals 190
6.10 Communication 202
6.11 Auxiliary Function 210

Chapter 6 Description of Parameters

6.1 Start/Stop Command Source

Three control methods are available:

- Operating panel (keypad \& display)
- Terminal I/O control
- Serial communication

You can select the required control mode in function parameter F0-02.

Function Code	Parameter Name	Setting Range	Default
F0-02	Command source selection	0: Operating panel (keypad \& display) (LED off)	0
		1: Terminal I/O control (LED on)	
		2: Serial comms. (LED flashing)	

- F0-02 $=0$: Operating panel (keypad \& display) (The LOCAL/REMOT indicator is off.)

The RUN commands are given by pressing keys and and on the operating panel.

- Press run to start the AC Drive.
- Press $\frac{\text { siop }}{\text { RESS }}$ to stop the AC Drive.

For details on operating panel, refer to Chapter 4 Operating Panel (Keypad \& Displa y).

- F0-02 = 1: Terminal I/O control (The LOCAL/REMOT indicator is on.)

The terminal I/O control mode applies to installations where the Start and Stop signals come from:

- A DIP switch or electromagnetic button, or
- A dry contact signal source

Commands are given by using multi-functional input terminals with functions such as FWD, REV, JOGF and JOGR.
For details on terminal I/O control, see 6.1.1 Terminal I/O Control.

- $\mathrm{FO}-02=2$: Serial comms (The LOCAL/REMOT indicator is flashing.)

The available serial communication options are Modbus, PROFIBUS-DP, CANlink, CANopen.
For details on serial communication, see 6.1.2 Serial Communication.

6.1.1 Terminal I/O Control

F4-11 defines the four terminal I/O control modes, in which the drive running is controlled by DI terminals.

Function Code	Parameter Name	Setting Range	Default
F4-11	Terminal I/O control mode	0: Two-wire control mode 1	0
		1: Two-wire control mode 2	
		2: Three-wire control mode 1	
		3: Three-wire control mode 2	

Figure 6-1 Four terminal I/O control modes

The following example takes DI1, DI2 and DI3 to describe how to control the AC drive via DI terminals.

- F4-11 = 0: Two-wire Control Mode 1

It is the most commonly used two-wire control mode. Allocate DI1 with forward run function and DI2 with reverse run function.

You need to connect forward run switch to DI1 and reverse run switch to DI2.
The parameters are set as below:

Function Code	Parameter Name	Value	Function Description
F0-02	Command source selection	1	Terminal I/O control
F4-11	Terminal I/O control mode	0	Two-wire control mode 1
F4-00	DI1 function selection	1	Forward RUN (FWD)
F4-01	DI2 function selection	2	Reverse RUN (REV)

In this mode,

- When SW1 is closed, motor rotates in forward direction. When SW1 is open, motor stops.
- When SW2 is closed, motor rotates in reverse direction. When SW2 is open, motor stops.
- When SW1 and SW2 are both open or closed simultaneously, motor stops.

Figure 6-2 Two-wire 1 sequence wiring diagram

Sequence diagrams of two-wire control mode 1 are shown in the following two figures.
Figure 6-3 Two-wire 1 sequence (normal)

Figure 6-4 Two-wire 1 sequence (abnormal)

F4-11 = 1: Two-wire Control Mode 2
In this mode, DI1 is RUN enabled terminal, and DI2 determines running direction. Allocate DI1 for RUN enabled function and DI2 for running direction.

The parameters are set as below:

Function Code	Parameter Name	Value	Function Description
F0-02	Command source selection	1	Terminal I/O control
F4-11	Terminal I/O control mode	1	Two-wire control mode 2
F4-00	DI1 function selection	1	Forward RUN (FWD)
F4-01	DI2 function selection	2	Reverse RUN (REV)

In this mode,

- When SW1 is closed, motor rotates in forward direction with SW2 open.
- When SW1 is closed, motor rotates in reverse direction with SW2 closed.
- When SW1 is open, motor stops no matter whether SW2 is open or closed.

Figure 6-5 Two-wire 2 sequence wiring diagram

Sequence diagram of two-wire control mode 2 is shown in the following figure.
Figure 6-6 Two-wire 2 sequence

F4-11 = 2: Three-wire Control Mode 1
In this mode, DI3 is three-wire control terminal. DI1 is set for forward run function and DI2 is set for reverse run function. The parameters are set as below:

Function Code	Parameter Name	Value	Function Description
F0-02	Command source selection	1	Terminal I/O control
F4-11	Terminal I/O control mode	2	Three-wire control mode 1
F4-00	DI1 function selection	1	Forward RUN (FWD)
F4-01	DI2 function selection	2	Reverse RUN (REV)
F4-01	DI3 function selection	3	Three wire control

SW3 is a normally-closed button and SW1 and SW2 are normally-open buttons.

- SW3 must remain closed during START sequence and during normal RUN operation.
- Motor stops immediately when SW3 opens.
- Signals from SW1 and SW2 are valid only with SW3 closed.
- On normal condition (SW3 closed), after you press down SW1, motor rotates in forward direction. After you press down SW2, motor rotates in reverse direction.

Figure 6-7 Three-wire 1 sequence wiring diagram

Sequence diagram of three-wire control mode 1 is shown in the following figure.
Figure 6-8 Three-wire 1 sequence

F4-11 = 3: Three-wire Control Mode 2
In this mode, DI3 is three-wire control command terminal. DI1 determines whether the RUN command is enabled and DI2 determines running direction.

The parameters are set as below:

Function Code	Parameter Name	Value	Function Description
F0-02	Command source selection	1	Terminal I/O control
F4-11	Terminal I/O control mode	3	Three-wire control mode 2
F4-00	DI1 function selection	1	Forward RUN (FWD)
F4-01	DI2 function selection	2	Reverse RUN (REV)
F4-01	DI2 function selection	3	Three wire control

SW3 is a normally-closed button and SW1 and SW2 are normally-open buttons.

- SW3 must remain closed during start sequence and during normal run operation.
- Motor stops immediately when SW3 opens.
- Signals from SW1 and SW2 are valid only with SW3 closed.
- On normal condition (SW3 closed), after you press down SW1, motor rotates in forward direction with SW2 open. Motor rotates in reverse direction with SW2 closed.

Figure 6-9 Three-wire 2 sequence wiring diagram

SW1	SW2	SW3	Running Command
$0 / 1$	$0 / 1$	0	Stop
1	0	1	Forward
1	1	1	Reverse

The timing diagram of the three-wire control mode 2 is shown in the following figure.
Figure 6-10 Three-wire 2 sequence

6.1.2 Serial Communication

We have the serial communications options, Modbus, Profibus-DP, CANlink and CANopen.
F0-28 has to be set correctly to engage the selected serial communication card if Modbus, Profibus-DP or CANopen is selected. F0-28 need not be set if CANlink is selected.

Function Code	Parameter Name	Setting Range	Default
F0-28	Serial port communication protocol	0: Modbus protocol 1: PROFIBUS-DP protocol or CANopen protocol	0

When the AC drive is controlled via serial communication, the host computer must send write command to the AC drive. Here takes the Modbus protocol as an example to describe process of giving run command via communication.

Figure 6-11 Example below with Modbus serial comms.

To make the drive run in reverse direction, the host computer sends the write command 010620 00000203 CB (hexadecimal). In the command,

- 01 H (settable): AC drive address
- 06 H : write command
- 2000 H : communication address
- 02 H : reverse run
- 03CBH: CRC check

For definition of other communication addresses and control commands, see 7.4 Definition of Communication Data Address.

Master Command			Slave Response
ADDR	01 H	ADDR	01 H
CMD	06 H	CMD	06 H
Parameter address high bits	20 H	Parameter address high bits	20 H
Parameter address low bits	00 H	Parameter address low bits	00 H
Data content high bits	00 H	Data content high bits	00 H
Data content low bits	02 H	Data content low bits	02 H
CRC high bits	03 H	CRC high bits	03 H
CRC low bits	CBH	CRC low bits	CBH

6.2 Set Frequency Reference

The AC drive provides the following four methods to output the required frequency reference:

- Main frequency reference
- Auxiliary frequency reference
- Main \& auxiliary calculation
- Command source + frequency reference setting channel

6.2.1 Set Main Frequency Reference

Main frequency reference has nine setting channels.
F0-03 selects a required channel to set the main frequency reference, described in the following figure.

Function Code	Parameter Name	Setting Range	Default
F0-03	Main frequency reference setting channel selection	0: Digital setting (non-retentive at power down)	1: Digital setting (retentive at power down)
		2: Al1	
		3: Al2	
		4: Al3	
		5: Pulse reference	
		6: Multi-reference	
		7: Simple PLC	
		8: PID reference	
		9: Serial comms.	

Figure 6-12 Select main frequency reference setting channel

- Digital Setting (Non-retentive at Power Down)

The initial value of frequency reference is F0-08 (Preset frequency). You can modify frequency reference by pressing Δ and ∇ on the operating panel (or using the UP/ DOWN function of input terminals).
When the AC drive is powered on again, frequency reference continues from the value of F0-08.

Digital Setting (Retentive at Power Down)

The initial value of frequency reference is F0-08 (Preset frequency). You can change frequency reference by pressing Δ and ∇ on the operating panel (or using the UP/ DOWN function of input terminals).
When the AC drive is powered on again, frequency reference continues from where it last reached.

Function Code	Parameter Name	Setting Range	Default
F0-08	Preset frequency	0.00 to max. frequency (F0-10)	50.00 Hz
F0-10	Max. frequency	50.00 to 500.00 Hz	50.00 Hz

Note

F0-23 (Retentive selection of digital setting frequency upon stop) determines whether to save frequency reference selection by pressing Δ and ∇ or via the up/down function when the AC drive stops. It is not the same as F0$03=0$ or 1 , which determines whether to retain the setting on power-off.

Function Code	Parameter Name	Setting Range	Default
F0-23	Retentive selection of digital setting frequency upon stop	0: Not retentive $1:$ Retentive	50.00 Hz

F0-23 is valid only when frequency reference setting channel is digital setting.

- $\mathrm{F0}-23=0$: Non-retentive

The AC drive resumes frequency reference to the value set in FO-08 at stop. Frequency reference continues from the value of $\mathrm{FO}-08$ at next power-on.

- $\mathrm{F} 0-23=1$: retentive

The AC drive retains the frequency reference that was last reached at stop. Frequency reference continues from the retained value at next power-on.

For example, $\mathrm{FO}-08$ is set to 40 Hz and you increase it to 45 Hz by pressing \triangle. If $\mathrm{FO}-23=0$, The drive resumes frequency reference to 40 Hz after stop. If $\mathrm{FO}-23=1$, frequency reference remains at 45 Hz after stop.

Analog Input

Al1 (0 to 10 V voltage input)
Al2 (0 to 10 V voltage input or 0 to 20 mA current input, determined by setting of jumper J9)

Al3 (-10 to 10 V voltage input)
Frequency reference is entered from an analog input (AI) terminal. To input frequency reference from an Al terminal, do as follows:

Step 1: Set AI curve.
The AC drive provides five curves to indicate mapping relationship between the input voltage entered from Al1, Al2 or Al3 and target frequency. Three of the curves have a linear (point-point) correspondence, and two have four-point correspondence. You can set curves via parameters F4-13 to F4-27 and parameters in group A6, and select curves for $\mathrm{Al1}, \mathrm{Al} 2$ and $\mathrm{Al3}$ in $\mathrm{F} 4-33$.

Here takes AI curve 1 as an example to describe how to set AI curve. Al curve 1 is set by F4-13 to F4-16.

Figure 6-13 Set Al curve 1

F4-13 to F4-16: These five parameters set relationship between analog input and corresponding percentage.

- When analog input voltage exceeds the value of F4-15, the AC drive uses the maximum value.
- When analog input voltage is below the value of F4-13, the AC drive uses the minimum value or 0.0%, determined by the setting of F4-34.

Function Code	Parameter Name	Setting Range	Default
F4-13	Al curve 1 min. input	0.00 V to F4-15	0.00 V
F4-14	Corresponding percentage of Al curve 1 min. input	-100.00% to 100.0%	0.0%
F4-15	Al curve 1 max. input	F4-13 to 10.00 V	10.00 V
F4-16	Corresponding percentage of Al curve 1 max. input	-100.00% to 100.0%	100.0%

Note

When an AI terminal is used for input of frequency reference, 100% of voltage/current input corresponds to the value of F0-10 (max. frequency). If analog input is current, 1 mA current is equal to 0.5 V voltage.

F4-18 to F4-21 and F4-3 to F4-26 define AI curve 2 and AI curve 3, respectively. Al curve 2 and AI curve 3 have the same function and usage as Al curve 1 does. Refer to Step 1: Set AI curve.

Figure 6-14 Set AI curve 2

Function Code	Parameter Name	Setting Range	Default
F4-18	Al curve 2 min. input	0.00 V to F4-20	0.00 V
F4-19	Corresponding percentage of Al curve 2 min. input	-100.00% to 100.0%	0.0%
F4-20	Al2 curve max. input	F4-18 to 10.00 V	10.00 V
F4-21	Corresponding percentage of Al curve 2 max. input	-100.00% to 100.0%	100.0%
F4-23	Al curve 3 min. input	0.00 V to F4-25	0.00 V
F4-24	Corresponding percentage of Al curve 3 min. input	-100.00% to 100.0%	0.0%
F4-25	Al curve 3 max. input	F4-23 to 10.00 V	10.00 V
F4-26	Corresponding percentage of Al curve 3 max. input	-100.00% to 100.0%	100.0%

A6-00 to A6-15 define Al curve 4 and AI curve 5, which have the similar function of Al curve 1 to Al curve 3 . Al curve 1 to Al curve 3 are linear correspondence and Al curve 4 and AI curve 5 are four-point correspondence.

Figure 6-15 Set Al curve 4 and Al curve 5

Note

When setting AI curve 4 and AI curve 5, curve min. input, inflexion 1 voltage, inflexion 2 voltage and curve max. input increase successively.

Function Code	Parameter Name	Setting Range	Default
A6-00	Al curve 4 min. input	-10.00 V to A6-02	0.00 V
A6-01	Corresponding percentage of Al curve 4 min. input	-100.0\% to 100.0\%	0.0\%
A6-02	Al curve 4 inflexion 1 input	A6-00 to A6-04	3.00 V
A6-03	Corresponding percentage of Al curve 4 inflexion 1 input	-100.0\% to 100.0\%	30.0\%
A6-04	Al curve 4 inflexion 1 input	A6-02 to A6-06	6.00 V
A6-05	Corresponding percentage of Al curve 4 inflexion 1 input	-100.0\% to 100.0\%	60.0\%
A6-06	Al curve 4 max. input	A6-06 to 10.00 V	10.00 V
A6-07	Corresponding percentage of Al curve 4 max. input	-100.0\% to 100.0\%	100.0\%
A6-08	Al curve 5 min. input	-10.00 V to A6-10	0.00 V
A6-09	Corresponding percentage of Al curve 5 min. input	-100.0\% to 100.0\%	0.0\%
A6-10	Al curve 5 inflexion 1 input	A6-08 to A6-12	3.00 V
A6-11	Corresponding percentage of Al curve 5 inflexion 1 input	-100.0\% to 100.0\%	30.0\%
A6-12	Al curve 5 inflexion 1 input	A6-10 to A6-14	6.00 V
A6-13	Corresponding percentage of Al curve 5 inflexion 1 input	-100.0\% to 100.0\%	60.0\%
A6-14	Al curve 5 max. input	A6-14 to 10.00 V	10.00 V
A6-15	Corresponding percentage of Al curve 5 max. input	-100.0\% to 100.0\%	100.0\%

Step 2: Select a required curve for Al terminal.
F4-33 selects curve of Al1, Al2 and Al3 from the five curves, respectively. Curve 1, curve 2 and curve 3 are 2-point curves, set in group F4. Curve 4 and curve 5 are 4 -point curves, set in group A6.
The drive provides two Al terminals (AI1, AI2). An extra Al terminal (AI3) is provided by the I/O extension card.

Function Code	Parameter Name	Setting Range	Default
F4-33	Al curve selection	Curve 1 (2 points, see F4-13 to F4-16)	321
		Curve 2 (2 points, see F4-18 to F4-21)	
		Curve 3 (2 points, see F4-23 to F4-23)	
		Curve 4 (4 points, see A6-00 to A6-07)	
		Curve 5 (4 points, see A6-08 to A6-15)	
		Units position: Al1 curve selection	
		Tens position: Al2 curve selection	
		Hundreds position: Al3 curve selection	
F4-17	Al1 filter time	0.00 s to 10.00 s	0.10s
F4-22	Al2 filter time	0.00 s to 10.00 s	0.10s
F4-27	Al3 filter time	0.00 s to 10.00 s	0.10s

F4-17, F4-22 and F4-27 set Al software filter time. If analog input is liable to interference, increase this parameter to stabilize detected analog input. But too large a setting slows response of analog detection. Set it correctly based on actual conditions.

Step 3: Select a required AI terminal as main frequency reference setting channel.
The AC drive provides two Al terminals (Al1, Al2). An extra Al terminal (Al3) is provided by the I/O extension card.

Here takes each Al terminal as examples to show how to use Al terminal to control main frequency reference.
Example 1: To make voltage input at Al1 to control frequency reference and correspond 2 to 10 V to 10 to 40 Hz , the settings are shown in the following figure.

Figure 6-16 Voltage input at Al1 to control frequency reference

Example 2: On the condition that current input from Al 2 is available, if 0 to 20 mA is input, it corresponds to voltage input of 0 to 10 V . If 4 to 20 mA is input, it corresponds to voltage input of 2 to 10 V .

To make current input at Al 2 to control frequency reference and correspond 4 to 20 mA to 0 to 50 Hz , the settings are shown in the following figure.
Figure 6-17 Current input at Al2 to control frequency reference

Example 3: To make voltage input at AI3 to control frequency reference and correspond 2 to 10 V to 10 to 50 Hz , the settings are shown in the following figure.
Figure 6-18 Voltage input at Al3 to control frequency reference

Pulse Reference (DI5)

Frequency reference is input by means of DI5 (high-speed pulse). Signal specification of pulse reference is 9 to 30 V (voltage range) and 0 to 100 kHz (frequency range). The corresponding value 100% of pulse reference corresponds to the value of F0-10 (max. frequency).

Note $\quad \begin{aligned} & \text { Main frequency reference set via pulse reference and pulse output of the FM }\end{aligned}$ terminal ($\mathrm{F} 5-00=1$) cannot be used simultaneously.

F4-28 to F4-32 set relationship between pulse input (from DI5 only) and corresponding percentage. It has the same function and usage as AI curve 1 does. Refer to Step 1: Set AI curve.

Function Code	Parameter Name	Setting Range	Default
F4-28	Pulse min. input	0.00 kHz to F4-30	0.00 kHz
F4-29	Corresponding percentage of pulse min. input	-100.00% to 100.0%	0.0%
F4-30	Pulse max. input	F4-28 to 50.00 kHz	50.00 kHz
F4-31	Corresponding percentage of pulse max. input	-100.00% to 100.0%	100.0%
F4-32	Pulse filter time	0.00 s to 10.00 s	0.10 s

Figure 6-19 Pulse input at DI5 to control frequency reference

Multi-reference

Multi-reference is a relative value and is a percentage of $\mathrm{FO}-10$ (max. frequency). Whether the setting is positive or negative determines drive running direction. If negative, it indicates that the AC drive runs in reverse direction.

Multiple frequency references are set in group FC, as listed in the following table.

Function Code	Parameter Name	Setting Range	Default
FC-00	Reference 0	-100.0% to 100.0%	0.0%
FC-01	Reference 1	-100.0% to 100.0%	0.0%
FC-02	Reference 2	-100.0% to 100.0%	0.0%
FC-03	Reference 3	-100.0% to 100.0%	0.0%
FC-04	Reference 4	-100.0% to 100.0%	0.0%
FC-05	Reference 5	-100.0% to 100.0%	0.0%
FC-06	Reference 6	-100.0% to 100.0%	0.0%
FC-07	Reference 7	-100.0% to 100.0%	0.0%
FC-08	Reference 8	-100.0% to 100.0%	0.0%
FC-09	Reference 9	-100.0% to 100.0%	0.0%
FC-10	Reference 10	-100.0% to 100.0%	0.0%
FC-11	Reference 11	-100.0% to 100.0%	0.0%
FC-12	Reference 12	-100.0% to 100.0%	0.0%
FC-13	Reference 13	-100.0% to 100.0%	0.0%
FC-14	Reference 14	-100.0% to 100.0%	0.0%
FC-15	Reference 15	-100.0% to 100.0%	0.0%

In multi-reference mode, combinations of different DI terminal states correspond to different frequency references. The AC drive supports a maximum of 16 references implemented by 16 state combinations of four DI terminals (allocated with functions 12 to 15) in Group FC.

If a DI terminal is used for the multi-reference function, you need to set related parameters in group F4.

The below diagram Figure 6-20 shows an example of 4 multi-frequency settings.
Figure 6-20 Using multi-reference to control frequency reference

The four multi-reference terminals have 16 state combinations, corresponding to 16 references, as listed in the following table.

K4	K3	K2	K1	Reference Setting	Corresponding Pr.
OFF	OFF	OFF	OFF	Reference 0	FC-00
OFF	OFF	OFF	ON	Reference 1	FC-01
OFF	OFF	ON	OFF	Reference 2	FC-02
OFF	OFF	ON	ON	Reference 3	FC-03
OFF	ON	OFF	OFF	Reference 4	FC-04
OFF	ON	OFF	ON	Reference 5	FC-05
OFF	ON	ON	OFF	Reference 6	FC-06
OFF	ON	ON	ON	Reference 7	FC-07
ON	OFF	OFF	OFF	Reference 8	FC-08
ON	OFF	OFF	ON	Reference 9	FC-09
ON	OFF	ON	OFF	Reference 10	FC-10
ON	OFF	ON	ON	Reference 11	FC-11
ON	ON	OFF	OFF	Reference 12	FC-12
ON	ON	OFF	ON	Reference 13	FC-13
ON	ON	ON	OFF	Reference 14	FC-14
ON	ON	ON	ON	Reference 15	FC-15

Note \quad Besides multi-speed function, the multi-reference can be also used as PID reference source or voltage source for V/F separation.

Simple PLC

When simple PLC is used to control frequency reference, the AC drive running frequency can be selected from any of the 16 frequency reference set points.

Figure 6-21 Using simple PLC to control frequency reference

You can set holding time and acceleration/deceleration time of 16 frequency references in FC-18 to FC-49.

Function Code	Parameter Name	Setting Range	Default
FC-18	Running time of simple PLC reference 0	0.0s (h) to 6553.5s (h)	0.0s (h)
FC-19	Acceleration/deceleration time of simple PLC reference 0	0 to 3	0
FC-20	Running time of simple PLC reference 1	0.0s (h) to 6553.5s (h)	0.0s (h)
FC-21	Acceleration/deceleration time of simple PLC reference 1	0 to 3	0
FC-22	Running time of simple PLC reference 2	0.0s (h) to 6553.5s (h)	0.0s (h)
FC-23	Acceleration/deceleration time of simple PLC reference 2	0 to 3	0
FC-24	Running time of simple PLC reference 3	0.0s (h) to 6553.5s (h)	0.0s (h)
FC-25	Acceleration/deceleration time of simple PLC reference 3	0 to 3	0
FC-26	Running time of simple PLC reference 4	0.0s (h) to 6553.5s (h)	0.0s (h)
FC-27	Acceleration/deceleration time of simple PLC reference 4	0 to 3	0
FC-28	Running time of simple PLC reference 5	0.0s (h) to 6553.5s (h)	0.0s (h)
FC-29	Acceleration/deceleration time of simple PLC reference 5	0 to 3	0
FC-30	Running time of simple PLC reference 6	0.0s (h) to 6553.5s (h)	0.0s (h)
FC-31	Acceleration/deceleration time of simple PLC reference 6	0 to 3	0
FC-32	Running time of simple PLC reference 7	0.0s (h) to 6553.5s (h)	0.0s (h)
FC-33	Acceleration/deceleration time of simple PLC reference 7	0 to 3	0
FC-34	Running time of simple PLC reference 8	0.0s (h) to 6553.5s (h)	0.0s (h)
FC-35	Acceleration/deceleration time of simple PLC reference 8	0 to 3	0
FC-36	Running time of simple PLC reference 9	0.0s (h) to 6553.5s (h)	0.0s (h)
FC-37	Acceleration/deceleration time of simple PLC reference 9	0 to 3	0
FC-38	Running time of simple PLC reference 10	0.0s (h) to 6553.5s (h)	0.0s (h)
FC-39	Acceleration/deceleration time of simple PLC reference 10	0 to 3	0
FC-40	Running time of simple PLC reference 11	0.0s (h) to 6553.5s (h)	0.0s (h)

Function Code	Parameter Name	Setting Range	Default
FC-41	Acceleration/deceleration time of simple PLC reference 11	0 to 3	0
FC-42	Running time of simple PLC reference 12	$0.0 \mathrm{~s} \mathrm{(h)} \mathrm{to} \mathrm{6553.5s} \mathrm{(h)}$	$0.0 \mathrm{~s}(\mathrm{~h})$
FC-43	Acceleration/deceleration time of simple PLC reference 12	0 to 3	0
FC-44	Running time of simple PLC reference 13	$0.0 \mathrm{~s} \mathrm{(h)} \mathrm{to} \mathrm{6553.5s} \mathrm{(h)}$	$0.0 \mathrm{~s}(\mathrm{~h})$
FC-45	Acceleration/deceleration time of simple PLC reference 13	0 to 3	0
FC-46	Running time of simple PLC reference 14	$0.0 \mathrm{~s}(\mathrm{~h})$ to 6553.5s (h)	$0.0 \mathrm{~s}(\mathrm{~h})$
FC-47	Acceleration/deceleration time of simple PLC reference 14	0 to 3	0
FC-48	Running time of simple PLC reference 15	$0.0 \mathrm{~s} \mathrm{(h)} \mathrm{to} \mathrm{6553.5s} \mathrm{(h)}$	$0.0 \mathrm{~s} \mathrm{(h)}$
FC-49	Acceleration/deceleration time of simple PLC reference 15	0 to 3	0

FC-16 determines the simple PLC running mode.

Function Code	Parameter Name	Setting Range	Default
FC-16	Simple PLC	0: Stop after running one cycle	0
	running mode	1: Keep final values after running one cycle	
		2: Repeat after running one cycle	

- $\mathrm{FC}-16=0$: Stop after running one cycle

The AC drive stops after running one cycle, and will not start until it receives a new RUN command.

- FC-16 = 1: Keep final values after running one cycle

The AC drive keeps final running frequency and direction after running one cycle.

- $\mathrm{FC}-16=2$: Repeat after running one cycle

The AC drive automatically starts another cycle after running one cycle, and will not stop until receiving stop command.

FC-17 determines whether the running data is retentive at power down or at stop.
If retentive, the running data is memorized at power down or at stop and the AC drive will continue to run from the memorized data at next power-on.

If not retentive, the AC drive runs from the first simple PLC reference at next power-on.

Function Code	Parameter Name	Setting Range	Default
FC-17	Simple PLC retentive selection	0: Not retentive 1: Retentive	00
		Unit position: Retentive at power down	
		Tens position: Retentive at stop	

FC-50 sets running time unit in simple PLC mode. FC-51 selects the setting channel of reference 0 .

Function Code	Parameter Name	Setting Range	Default
FC-50	Time unit of simple PLC running	0: s (second) 1: h (hour)	0
FC-51	Reference 0 source	0: Set by FC-00	
		1: Al1	
		2: Al2	0
		3: AI3	
		4: Pulse reference	
		5: PID	
		6: Set by preset frequency (F0-08),	
modified via terminal UP/DOWN			

Note Simple PLC can be either frequency reference setting channel or voltage reference setting channel for V/F separation.

PID Reference
The PID (Proportional + Integral + Derivative) function uses system feedback for closedloop control of variables such as flow, pressure, temperature, and so on.

The purpose of PID control is to keep the drive output as close as possible to a desired reference via PID adjustment.

- Proportional gain (Kp1)

A large value tends to reduce present error, but too large setting will cause system oscillation.

- Integral time (Ti1)

The shorter the integral time is, the faster the error will be predicted. But too short setting will cause overshoot or system oscillation.

- Derivative time (Td1)

The longer the derivative time is, the faster the system will respond to the error. But too longer setting will cause vibration.

Figure 6-22 Function block diagram of the PID control

Figure 6-23 PID control function diagram

Function Code	Parameter Name	Setting Range	Default
FA-00	PID reference setting channel	0: Set by FA-01 1: Al1 2: Al2 3: Al3 4: Pulse reference (DI5) 5: Serial comms. 6: Multi-reference	0
FA-01	PID digital setting	0.0\% to 100.0\%	50.0\%
FA-02	PID feedback setting channel	$\begin{aligned} & 0: \mathrm{Al1} \\ & \text { 1: Al2 } \\ & \text { 2: Al3 } \\ & \text { 3: Al1-AI2 } \\ & \text { 4: Pulse reference (DI5) } \\ & \text { 5: Serial comms. } \\ & \text { 6: Al1 + Al2 } \\ & \text { 7: Max. (\|Al1\|, \|Al2\|) } \\ & \text { 8: Min. (\|Al1\|, \|AI2\|) } \end{aligned}$	0
FA-03	PID operation direction	0: Forward 1: Reverse	0
FA-04	PID reference and feedback range	0 to 65535	1000
FA-05	Proportional gain Kp1	0.0 to 100.0	20.0
FA-06	Integral time Ti1	0.01s to 10.00 s	2.00s
FA-07	Differential time Td1	0.00 s to 10.000 s	0.000s

FA-00 and FA-01 set input channel of PID reference. PID reference is a relative value and ranges from 0.0% to 100.0%.

FA-02 sets PID feedback channel. PID feedback is a relative value and ranges from 0.0% to 100.0%.

FA-03 sets direction of PID operation. It is influenced by DI function 35 "PID operation direction reverse".

- FA-03 = 0: Forward

When PID feedback is smaller than PID reference, the AC drive increases output frequency. The winding tension control requires forward PID operation.

- FA-03 = 1: Reverse

When PID feedback is smaller than PID reference, the AC drive decreases output frequency. The unwinding tension control requires reverse PID operation.

FA-04: It is a non-dimensional parameter and is used for calculating display of PID reference (U0-15) and PID feedback (U0-16).

- U0-15 = PID reference (percentage) x FA-04
- U0-16 = PID feedback (percentage) \times FA-04

For example, if FA-04 is set to 2000 and PID reference is 100.0%, display of PID reference (U0-15) is 2000.

Function Code	Parameter Name	Setting Range	Default
FA-08	PID output limit in reverse direction	0.00 Hz to max. frequency	2.00 Hz

FA-08: In some applications a high PID output in reverse direction may introduce adverse reactions and so a limit need to be applied".

- When frequency reference setting channel is purely PID reference, FA-08 limits the output in reverse direction.
- When frequency reference setting channel is main frequency reference + PID reference, FA-08 limits the calculation result in reverse direction.

Function Code	Parameter Name	Setting Range	Default
FA-09	PID error limit	0.0% to 100.0%	0.0%

FA-09: This function helps to make the AC drive output accurate and stable.

Function Code	Parameter Name	Setting Range	Default
FA-10	PID differential limit	0.00% to 100.00%	0.10%

FA-10 applies a limit to PID differential output as a large output can cause excessive system oscillation.

Function Code	Parameter Name	Setting Range	Default
FA-11	PID reference change time	0.00 s to 650.00 s	0.00 s

FA-11 sets time it takes PID reference to change from 0.0% to 100.0%. PID reference changes linearly based on the time set in this parameter, reducing negative impact of sudden PID reference change.

Function Code	Parameter Name	Setting Range	Default
FA-12	PID feedback filter time	0.00 s to 60.00 s	0.00 s
FA-13	PID output filter time	0.00 s to 60.00 s	0.00 s

FA-12 filters the PID feedback, which helps to lower interference on PID feedback but slows system response performance.

FA-13 filters the PID output frequency, which helps to drop off mutation of the AC drive output frequency but slows system response performance.

Function Code	Parameter Name	Setting Range	Default
FA-15	Proportional gain Kp2	0.0 to 100.0	20.0
FA-16	Integral time Ti2	0.01 s to 10.00 s	2.00 s
FA-17	Differential time Td2	0.000 s to 10.000 s	0.000 s
FA-18	PID parameter switchover condition	0: No switchover 1: Switchover via DI 2: Auto switchover based on PID error 3: Auto switchover based on running frequency	0
FA-19	PID error 1 for auto switchover	0.0\% to FA-20	20.0%
FA-20	PID error 2 for auto switchover	FA-19 to 100.0\%	80.0%

FA-15 to FA-20: On some applications, switchover to another set of PID parameters may be required to fine tune the overall performance as load conditions can vary during the different machine cycles.

Switchover can be implemented via a DI terminal or automatically implemented according to PID error level.

Figure 6-24 Switchover of two groups of PID parameters

Function Code	Parameter Name	Setting Range	Default
FA-21	PID initial value	0.0% to 100.0%	0.0%
FA-22	PID initial value active time	0.00 s to 650.00 s	0.00 s

FA-21 and FA-22: When the AC drive starts, the PID function turns active only after PID output is fixed at PID initial value (FA-21) for time set in FA-22.
Figure 6-25 The PID initial value function

Function Code	Parameter Name	Setting Range	Default
FA-25	PID integral property	Units position: Integral separation	00
		0: Disabled	
		1: Enabled	
		Tens position: Whether to stop integral operation when the PID output reaches	
		the limit	
		$0:$ Continue integral operation	
		$1:$ Stop integral operation	

FA-25 determines whether to enable integral separation function and whether to stop integral operation when PID output reaches limit.

If integral separation is enabled, when a DI set for function 38 "PID integral disabled" is on, the integral operation becomes disabled. At this moment, only the P gain and derivative time take effect.

If integral separation is disabled, no matter whether the DI set for function 38 "PID integral disabled" is on, integral separation is inactive.

Function Code	Parameter Name	Setting Range	Default
FA-26	Detection level of PID feedback loss	0.0% : No detection 0.1% to 100.0%	0.0%
FA-27	Detection time of PID feedback loss	0.0 s to 20.0s	0.0 s

FA-26 and FA-27 define the PID feedback loss detection function. When PID feedback is smaller than the value set in FA-26 for time set in FA-27, AC drive detects Err31 and acts as selected in ten thousands position in F9-49.

Function Code	Parameter Name	Setting Range	Default
FA-28	Selection of PID operation at stop	$0:$ Disabled $1:$ Enabled	0

FA-28: This function parameter determines whether to continue PID operation when the AC drive stops.

Serial Comms.
We have the serial communications options, Modbus, Profibus-DP, CANlink and CANopen.

F0-28 has to be set correctly to engage the selected serial communication card if Modbus, Profibus-DP or CANopen is selected. F0-28 need not be set if CANlink is selected.

Function Code	Parameter Name	Setting Range	Default
F0-28	Serial port communication protocol	0: Modbus protocol 1: PROFIBUS-DP protocol or CANopen protocol	0

When the AC drive is controlled via serial communication, the host computer must send write command to the AC drive. The below Figure 6-26 uses the Modbus protocol to control frequency reference.

Figure 6-26 Use Modbus serial comms. to control frequency reference

When the AC drive is controlled via communication, host computer must send write command to the AC drive. Here takes Modbus as an example to describe process of giving RUN command via serial communication.

To set frequency reference to 10000, host computer sends write command 01061000 27109736 (hexadecimal). In the command,

- 01 H (settable): AC drive address
- 06 H : write command
- 1000 H : frequency reference address
- 2710 H : frequency reference (converted into decimal 10000)
- 9736H: CRC check

Master Command		Slave Response	
ADDR	01 H	ADDR	01 H
CMD	06 H	CMD	06 H
Parameter address high bits	10 H	Parameter address high bits	10 H
Parameter address low bits	00 H	Parameter address low bits	00 H
Data content high bits	27 H	Data content high bits	27 H
Data content low bits	10 H	Data content low bits	10 H
CRC high bits	97 H	CRC high bits	97 H
CRC low bits	36 H	CRC low bits	36 H

Note

Frequency reference range set via communication is -10000 to 10000 , corresponding to -100.00% to 100.00%.

- -100.00% corresponds to negative max. frequency.
- 0.00% corresponds to min. frequency.
- 100.00% corresponds to max. frequency.

Suppose that $\mathrm{F} 0-10=50 \mathrm{~Hz}$, if frequency reference in the write command is 2710, converted into decimal 10000. The input frequency reference is 50 x $100 \%=50 \mathrm{~Hz}$.

6.2.2 Setting Auxiliary Frequency Reference

Auxiliary frequency reference has the same nine setting modes as main frequency reference does.

F0-04 selects a proper channel to set auxiliary frequency reference.

Function Code	Parameter Name	Setting Range	Default
F0-04	Auxiliary frequency reference setting channel selection	0: Digital setting (non-retentive at power down) 1: Digital setting (retentive at power down) 2: Al1 3: AI2 4: Al3 5: Pulse reference 6: Multi-reference 7: Simple PLC 8: PID reference 9: Serial comms.	0

Figure 6-27 select a proper channel to set auxiliary frequency reference

6.2.3 Main \& Auxiliary Calculation

You can set relationship between final frequency reference and main frequency reference \& auxiliary frequency reference in F0-07.

- Use main frequency reference as final frequency reference.
- Use auxiliary frequency reference as final frequency reference.
- Use main \& auxiliary calculation as final frequency reference.
- Final frequency reference is switched over between main and auxiliary, between main and main \& auxiliary calculation, and between auxiliary and main \& auxiliary calculation through a DI set for function 18 (Frequency reference setting channel switchover).

Figure 6-28 Set final frequency reference

Function Code	Parameter Name	Setting Range	Default
F0-07	Final frequency reference setting selection	Units position: Frequency reference selection 0: Main frequency reference 1: Main and auxiliary calculation (based on tens position) 2: Switchover between main and auxiliary 3: Switchover between main and "main \& auxiliary calculation" 4: Switchover between auxiliary and "main \& auxiliary calculation" Tens position main and auxiliary calculation formula 0: Main + auxiliary 1: Main - auxiliary 2: Max. (main, auxiliary) 3: Min. (main, auxiliary)	00
F0-05	Base value of range of auxiliary frequency reference for main and auxiliary superposition	0 : Relative to maximum frequency 1: Relative to main frequency reference	0
F0-06	Range of auxiliary frequency reference for main and auxiliary superposition	0\% to 150\%	100\%

When main frequency reference and auxiliary frequency reference are used for calculation (final frequency reference is set by "main and auxiliary calculation"), pay attention to the following aspects:

- If auxiliary frequency reference is digital setting, preset frequency (F0-08) does not take effect. You can directly adjust auxiliary frequency reference by pressing keys
 and ∇ on the operating panel (or using the UP/DOWN function of input terminals) based on main frequency reference.
- If auxiliary frequency reference is set via analog input (Al1, Al2 and Al 3) or pulse reference, 100% of the input corresponds to range of the auxiliary frequency reference (set in F0-05 and F0-06). This is valid for main and auxiliary calculation.
- Main frequency reference and auxiliary frequency reference must not use the same setting channel. That is, F0-03 and F0-04 cannot be set to the same value.
- Main \& auxiliary calculation can be used for closed-loop speed control. An example of this is to use main frequency reference to set a required frequency reference and to use auxiliary frequency reference for automatic adjustment. Closed-loop control is implemented when this method is used with switchover performed by an external DI terminal signal.

6.2.4 Command Source + Frequency Reference Setting Channel

It is possible to control final frequency reference through command source + frequency reference setting channel.

Figure 6-29 Command source + main frequency reference setting channel

When a command source + frequency reference setting channel is used to control final frequency reference, both main and auxiliary frequency reference setting channels (F0-03 and F0-04) become ineffective.

Function Code	Parameter Name	Setting Range	Default
F0-27	Command source + frequency source	0: No function	000
		1: Digital setting	
		2: Al1	
		3: AI2	
		4: AI3	
		5: Pulse reference (DI5)	
		6: Multi-reference	
		7: Simple PLC	
		8: PID reference	
		9: Serial comms.	
		Units position: operating panel (keypad \& display) + frequency reference setting channel	
		Tens position: terminal I/O control + frequency reference setting channel	
		Hundreds position: serial comms. + frequency reference setting channel	

6.2.5 Frequency Reference Limit

Function Code	Parameter Name	Setting Range	Default
F0-10	Max. frequency	50.00 to 500.00 Hz	50.00 Hz
F0-11	Setting channel of frequency reference upper limit	0: Set by F0-12 1: Al1 2: Al2 3: Al3 $4:$ Pulse reference (DI5) $5:$ Communication reference	0
F0-12	Frequency reference upper limit	0.00 Hz to maximum frequency (F0-10)	0.00 Hz
F0-14	Frequency reference lower limit	0.00 Hz to frequency upper limit (F0-12)	0.00 Hz

- F0-12: The motor is not allowed to run at frequency reference above the setting in this function parameter.
- F0-14: The motor is not allowed to run at frequency reference below the setting in this function parameter.
- F0-10: It limits max. output frequency of the AC drive.
- F0-11: It selects setting channel of frequency reference upper limit.

6.2.6 Running Mode When Frequency Reference Below Lower Limit

Function Code	Parameter Name	Setting Range	Default
F8-14	Running mode when frequency reference	0: Run at frequency reference lower limit lower than frequency lower limit	0

F8-14: This function parameter sets the drive running mode when frequency reference is lower than frequency lower limit.

- F8-14 = 0: The motor runs at frequency reference lower limit.
- $\mathrm{F} 8-14=1$: The motor stops and the RUN indicator on the operation panel becomes off.
- $\mathrm{F} 8-14=2$: The motor runs at 0 Hz and the RUN indicator on the operation panel is on.

6.3 Start/Stop the AC Drive

This section describes how to start/stop the AC drive.

6.3.1 Start Mode

You can set start mode of the AC drive in F6-00, direct start, catching a spinning motor, preexcited start and SVC quick start.

Related function parameters are listed as follows:

Function Code	Parameter Name	Setting Range	Default
F6-00	Start mode	0: Direct start 1: Catching a spinning motor 2: Pre-excited start 3: SVC quick start	0
F6-01	Mode of catching a spinning motor	0: From stop frequency 1: From 50 Hz 2: From max. frequency	0
F6-02	Speed of catching a spinning motor	1 to 100	20
F6-03	Start frequency	0.00 to 10.00 Hz	0.00 Hz
F6-04	Start frequency holding time	0.0 s to 100.0 s	0.0 s
F6-05	DC injection braking 1 level /Pre-excitation level	0% to 100%	50%
F6-06	DC injection braking 1 active time /Pre-excitation active time	0.0 s to 100.0 s	0.0 s

F6-00 = 0: Direct Start
It is applicable to most small-inertia loads, as shown in Figure 6-30 (1).
Start frequency is applicable to drive equipment which requires startup torque, such as cement mixer, as shown in Figure 6-30 (2).

The DC injection braking function is applicable to drive load such as elevator and crane, as shown in Figure 6-30 (3).

Figure 6-30 (1) Sequence of direct start

Figure 6-30 (2) Sequence of start with start frequency

Figure 6-30 (3) Sequence of start with DC injection braking

F6-00 $=1$: Catching a Spinning Motor
To catch a spinning motor, the AC drive detects speed and direction of spinning motor, and then starts to run from the spinning motor frequency.

In this start mode, ensure that motor parameters in group F1 are set correctly.
Figure 6-31 Catching a spinning motor

F6-00 = 2: Pre-excited Start
It is valid only for asynchronous motor and used for building magnetic field before motor running. For pre-excited current and pre-excited time, see F6-05 and F6-06.

- If pre-excited time is 0 , the AC drive cancels pre-excitation and starts to run from start frequency.
- If pre-excited time is not 0 , the AC drive pre-excites first and then starts to run, improving motor dynamic response.

F6-00 = 3: SVC quick start
It is applicable only for asynchronous motor in SVC mode, which can shorten acceleration time. It is used when system inertia is large and quick start is required. But torque impact exists in this mode.

6.3.2 Stop Mode

You can set the stop mode of the AC drive in F6-10, decelerate to stop and coast to stop.
The related function parameters are listed as follows:

Function Code	Parameter Name	Setting Range	Default
F6-10	Stop mode	0: Decelerate to stop $1:$ Coast to stop	0
F6-11	DC injection braking 2 start frequency	0.00 Hz to maximum frequency	0.00 Hz
F6-12	DC injection braking 2 delay time	0.0 to 36.0s	0.0 s
F6-13	DC injection braking 2 level	0% to 100%	50%
F6-14	DC injection braking 2 active time	0.0 s to 36.0s	0.0 s

F6-11: The AC drive starts DC injection braking when the running frequency decreases to the value set in this parameter in the process of deceleration to stop.

F6-12: When the running frequency decreases to the value set in F6-11, the AC drive stops output for a period of time and then starts DC injection braking. This prevents the occurrence of fault such as overcurrent caused by direct DC injection braking at high speed.
F6-13: It has the following two different base values.

- If the rated motor current is less than or equal to 80% of the rated AC drive current, the base value is the rated motor current.
- If the rated motor current is greater than 80% of the rated $A C$ drive current, the base value is 80% of the rated AC drive current.

F6-14: If it is set to 0, DC injection braking is disabled.
Figure 6-32 Timing diagram of DC injection braking for stop

F6-10 = 0: Decelerate to Stop
Once the stop command is input, the AC drive decreases the output frequency based on the deceleration time to 0 .

Figure 6-33 Decelerate to stop

F6-10 = 1: Coast to Stop
Once the stop command is input, the AC drive immediately stops output. The motor then coasts to stop based on the mechanical inertia.

Figure 6-34 Coast to stop

6.3.3 Acceleration/Deceleration Time and S-curve Setting

Acceleration time indicates time required by the AC drive to accelerate from 0 Hz to acceleration/ deceleration time base frequency (F0-25).

Deceleration time indicates time required by the AC drive to decelerate from acceleration/ deceleration time base frequency (F0-25) to 0 Hz .
Figure 6-35 Acceleration/Deceleration time

The AC drive provides totally four groups of acceleration/deceleration time for selection. You can perform switchover by using a DI terminal.

- Group 1: F0-17, F0-18
- Group 2: F8-03, F8-04
- Group 3: F8-05, F8-06
- Group 4: F8-07, F8-08

For example, select DI7 and DI8 for switchover.
Related function parameters are set as follows:

Function Code	Parameter Name	Setting	Function Description
F4-06	DI7 function selection	16	Terminal 1 for acceleration/deceleration time selection
F4-07	DI8 function selection	17	Terminal 2 for acceleration/deceleration time selection

Two terminals for acceleration/deceleration time selection have four state combinations, as listed in the following table.

Terminal 2	Terminal 1	Accel/Decel Time Selection	Corresponding Pr.
OFF	OFF	Accel/Decel time 1	F0-17, F0-18
OFF	ON	Accel/Decel time 2	F8-03, F8-04
ON	OFF	Accel/Decel time 3	F8-05, F8-06
ON	ON	Accel/Decel time 4	F8-07, F8-08

The function parameters related acceleration/deceleration time are as follows:

Function Code	Parameter Name	Setting Range	Default
F0-17	Acceleration time 1	$\begin{aligned} & 0.00 \text { to } 650.00 \text { s (F0-19 = 2) } \\ & 0.0 \text { to } 6500.0 \text { s (F0-19 = 1) } \\ & 0 \text { to } 65000 \text { s (F0-19 = 0) } \end{aligned}$	Model dependent
F0-18	Deceleration time 1	$\begin{aligned} & 0.00 \text { to } 650.00 \text { s (F0-19 = 2) } \\ & 0.0 \text { to } 6500.0 \text { s (F0-19 = 1) } \\ & 0 \text { to } 65000 \text { s (F0-19 = 0) } \end{aligned}$	Model dependent
F8-03	Acceleration time 2	0.0s to 6500.0s	Model dependent
F8-04	Deceleration time 2	0.0s to 6500.0s	Model dependent
F8-05	Acceleration time 3	0.0s to 6500.0s	Model dependent
F8-06	Deceleration time 3	0.0s to 6500.0s	Model dependent
F8-07	Acceleration time 4	0.0s to 6500.0s	Model dependent
F8-08	Deceleration time 4	0.0s to 6500.0s	Model dependent
F0-19	Acceleration/ Deceleration time unit	$\begin{aligned} & 0: 1 \mathrm{~s} \\ & 1: 0.1 \mathrm{~s} \\ & 2: 0.01 \mathrm{~s} \end{aligned}$	1
F0-25	Acceleration/ Deceleration time base frequency	0 : Maximum frequency (F0-10) 1: Frequency reference $\text { 2: } 100 \mathrm{~Hz}$	0
F6-07	Acceleration/ Deceleration mode	0: Linear acceleration/deceleration 1: Static S-curve acceleration/ deceleration 2: Dynamic S-curve acceleration/ deceleration	0
F6-08	Time proportion of S-curve start segment	0.0\% to (100.0\% - F6-09)	30.0\%
F6-09	Time proportion of S-curve end segment	0.0\% to (100.0\% - F6-08)	30.0\%

F6-07 sets acceleration/deceleration mode.

- F6-07 = 0: Linear acceleration/deceleration

Output frequency increases or decreases linearly. The drive provides four groups of acceleration/deceleration time, selected via F4-00 to F4-08.

- F6-07 = 1: Static S-curve acceleration/deceleration

Output frequency increases or decreases along S curve on the condition that target frequency is fixed. This mode is applied to applications where soft start or stop is required, such as elevator and conveyor belt.

- F6-07 = 2: Dynamic S-curve acceleration/deceleration

Output frequency increases or decreases along S curve on the condition that target frequency is changing at real time. This mode is applicable to applications requiring supreme riding comfort and fast response.

F6-08 and F6-09 define time proportion of start segment and end segment of S-curve acceleration/deceleration, respectively. They must satisfy F6-08 + F6-09 $\leq 100.0 \%$.

6.4 Motor Auto-tuning

You can obtain parameters of controlled motor through motor auto-tuning.
Motor auto-tuning methods are static auto-tuning 1, static auto-tuning 2 and dynamic auto-tuning. You can select a proper auto-tuning method in F1-37.

Function Code	Parameter Name	Setting Range	Default
F1-37	Motor auto-tuning method	0: No auto-tuning	0
	selection	1: Static auto-tuning 1	
		2: Dynamic auto-tuning	
		3: Static auto-tuning 2	

- F1-37 = 0: Motor auto-tuning is not performed.
- F1-37 = 1: Only stator resistance, rotor resistance and leakage inductance are obtained through static auto-tuning 1.
- F1-37 = 2: All motor parameters are obtained through dynamic auto-tuning. If the AC drive is in FVC mode, you must make clear of encoder parameters (F1-27 to F1-34).
- F1-37 = 3: All motor parameters are obtained through static auto-tuning 2.

The three motor auto-tuning methods are compared as follows:

Auto-tuning Method	Application	Result
Static auto-tuning 1	It is applied to applications where motor cannot be disconnected from load and dynamic auto-tuning is not allowed.	OK
Dynamic auto-tuning	It is applied to applications where motor can be disconnected from load.	Best
Static auto-tuning 2	It is applied to applications where the motor cannot be disconnected from the load and dynamic auto-tuning is not allowed.	Better

Motor 1 is used to describe motor auto-tuning methods below. If you need to perform motor 2 autotuning, set F0-24 = 1 and refer to 6.8.4 Motor 2 Parameters.

- \quad 1-37 $=1$: Static Auto-tuning 1

If V / F is adopted and motor cable exceeds 50 m , keep motor connected to load and use static auto-tuning 1 .

The static auto-tuning 1 process is as follows:

Steps	Description
Step 1	Power on the AC drive. Set F0-02 $=0$ to select the operation panel as command source.
Step 2	Input motor nameplate parameters (F1-00 to F1-05) correctly.
Step 3	Set F1-37 = 1 to select static auto-tuning 1. Press on the operation panel. The operation panel displays
Step 4	Press sun on the operation panel. Motor does not rotate but gets energized. The RUN indicator becomes ON. After the preceding display disappears and the operation panel returns to normal parameter display state, it indicates that auto-tuning is completed. Parameters F1-06 to F1-08 are obtained.

F1-37 = 2: Dynamic Auto-tuning

If motor has constant output characteristic and is used for high-accuracy application, disconnect motor from load and use dynamic auto-tuning. It is applicable to SVC or FVC mode.

The dynamic auto-tuning process is as follows:

Steps	Description
Step 1	Power on the AC drive. Set F0-02 = 0 to select the operation panel as command source.
Step 2	Input motor nameplate parameters (F1-00 to F1-05) correctly.
Step 3	Set F1-37 = 2 to select dynamic auto-tuning. Press on the operation panel. The
operation panel displays	Press an on the operation panel. The AC drive drives motor to accelerate/decelerate and run in forward/reverse direction. The RUN indicates becomes ON and auto-tuning lasts for a period. After the preceding display disappears and the operation panel returns to normal parameter display state, it indicates that auto-tuning is completed. Parameters F1-06 to F1-10 and F1-30 are obtained.

F1-37 = 3: Static Auto-tuning 2
If motor cannot be disconnected from load, use static auto-tuning 2. It is applicable to SVC or FVC. The static auto-tuning 2 process is as follows:

Steps	Description
Step 1	Power on the AC drive. Set F0-02 = 0 to select operating panel as command source.
Step 2	Input motor nameplate parameters (F1-00 to F1-05) correctly.
Step 3	Set F1-37 = 3 to select the static auto-tuning 2. Press operation panel displays Step 4 Motor does not rotate but gets energized. The RUN indicates becomes ON. After the preceding display disappears and the operation panel returns to normal parameter display state, it indicates that auto-tuning is completed. Parameters F1-06 to F1-10 are obtained.

Note

- If it is not possible to perform motor auto-tuning on site, input motor parameters of the same motor model into parameters F1-00 to F1-10.
- You can also perform motor auto-tuning via terminal I/O control or serial comms. (F0-02 = 1 or 2).

Related parameters are described as follows:

Function Code	Parameter Name	Setting Range	Default
F1-00	Motor type selection	0: Common asynchronous motor 1: Variable frequency asynchronous motor	1
F1-01	Rated motor power	0.1 to 1000.0 kW	Model dependent
F1-02	Rated motor voltage	1 to 2000 V	Model dependent
F1-03	Rated motor current	0.01 to $655.35 \mathrm{~A}(\mathrm{AC}$ drive power $\leq 55 \mathrm{~kW})$ 0.1 to $6553.5 \mathrm{~A}(\mathrm{AC}$ drive power $>55 \mathrm{~kW})$	Model dependent
F1-04	Rated motor frequency	0.01 Hz to max. frequency	Model dependent
F1-05	Rated motor speed	1 to 65535 RPM	Model dependent

F1-00 to F1-05 are motor nameplate parameters. Set them correctly according to motor nameplate to ensure accurate motor auto-tuning result. Advantages of V/F, SVC or FVC can be obtained only after correct motor parameters are applied.

Function Code	Parameter Name	Setting Range	Default
F1-06	Stator resistance	$\begin{aligned} & 0.001 \text { to } 65.535 \Omega(\mathrm{AC} \text { drive power } \leq 55 \mathrm{~kW}) \\ & 0.0001 \text { to } 6.5535 \Omega(\mathrm{AC} \text { drive power }>55 \mathrm{~kW}) \end{aligned}$	Model dependent
F1-07	Rotor resistance	$\begin{aligned} & 0.001 \text { to } 65.535 \Omega(\mathrm{AC} \text { drive power } \leq 55 \mathrm{~kW}) \\ & 0.0001 \text { to } 6.5535 \Omega(\mathrm{AC} \text { drive power }>55 \mathrm{~kW}) \end{aligned}$	Model dependent
F1-08	Leakage inductive reactance	0.01 to 655.35 mH (AC drive power $\leq 55 \mathrm{~kW}$) 0.001 to 65.535 mH (AC drive power > 55 kW)	Model dependent
F1-09	Mutual inductive reactance	0.1 to 6553.5 mH (AC drive power $\leq 55 \mathrm{~kW}$) 0.01 to 655.35 mH (AC drive power > 55 kW)	Model dependent
F1-10	No-load current	0.01 to F1-03 (AC drive power $\leq 55 \mathrm{~kW}$) 0.1 to F1-03 (AC drive power > 55 kW)	Model dependent

F1-06 to F1-10: These function parameters are asynchronous motor parameters and can be obtained through motor auto-tuning. Only F1-06 to F1-08 can be obtained through static autotuning. F1-06 to F1-10 as well as F1-30 (A/B phase sequence of ABZ incremental encoder) can be obtained through dynamic auto-tuning.

If motor auto-tuning cannot be performed on site, set these parameters according to data provided by motor manufacturer.

Function Code	Parameter Name	Setting Range	Default
F1-27	Encoder pulses per revolution	1 to 65535	1024

F1-27 sets pulses per revolution (PPR) of encoder. In FVC mode, F1-27 must be set correctly. Otherwise, motor cannot run properly.

Function Code	Parameter Name	Setting Range	Default
F1-28	Encoder type	0: ABZ incremental encoder 2: Resolver	0

F1-28: Different types of encoders require different PG cards. Set this function parameter correctly after installation of a proper PG card is completed. Otherwise, the AC drive may run abnormally.

Function Code	Parameter Name	Setting Range	Default
F1-30	A/B phase sequence of ABZ incremental encoder	0: Forward 1: Reserve	0

F1-30 sets A / B phase sequence of $A B Z$ incremental encoder and thus is valid for $A B Z$ incremental encoder (F1-28 = 0).

- F1-30 = 0: Forward

Phase A is advanced of phase B for forward motor rotation. Phase B is advanced of phase A for reverse motor rotation.

- F1-30 = 1: Reverse

Phase B is advanced of phase A for forward motor rotation. Phase A is advanced of phase B for reverse motor rotation.

Function Code	Parameter Name	Setting Range	Default
F1-31	Encoder installation angle	0.0° to 359.9°	0.0°

Function Code	Parameter Name	Setting Range	Default
F1-34	Number of pole pairs of resolver	1 to 65535	1

F1-34: If a resolver is applied, set the number of pole pairs of resolver properly.

Function Code	Parameter Name	Setting Range	Default
F1-36	Encoder wire-break fault detection time	$0.0 \mathrm{~s}:$ No detection 0.1 s to 10.0 s	0.0 s

F1-36 sets wire-break detection time. If it is set to 0.0 s , detection is disabled. If wire-break detection time exceeds the value set in F1-36, the AC drive will trip with Err20.

6.5 Control Performance

6.5.1 V/F Curve

Linear, Multi-point and Square V/F Curve

Function Code	Parameter Name	Setting Range	Default
F3-00	V/F curve setting	0, 2-9: Linear V/F 1: Multi-point V/F 10: V/F separation 11: Specific V/F separation	0
F3-01	Torque boost	0.0% : automatic torque boost 0.1% to 30%	Model dependent
F3-02	Cut-off frequency of torque boost	0.00 Hz to max. frequency	50.00 Hz
F3-03	Multi-point V/F frequency 1	0.00 Hz to F3-05	0.00 Hz
F3-04	Multi-point V/F voltage 1	0.0\% to 100.0\%	0.0\%
F3-05	Multi-point V/F frequency 2	F3-03 to F3-07	0.00 Hz
F3-06	Multi-point V/F voltage 2	0.0\% to 100.0\%	0.0\%
F3-07	Multi-point V/F frequency 3	F3-05 to rated motor frequency (F1-04)	0.00 Hz
F3-08	Multi-point V/F voltage 3	0.0\% to 100.0\%	0.0\%

1. General constant-torque linear V/F curve

Figure 6-36 General constant-torque linear V/F curve

Output voltage and output frequency change linearly when below rated frequency. It is applicable to general mechanical drive applications such as conveyors where the load torque is constant against the speed range.
2. User-defined Multi-point V/F curve

Figure 6-37 User-defined Multi-point V/F curve

F3-03 to F3-08 define multi-point V/F curve.
You must set multi-point V/F curve based on motor's load characteristic. The three voltage points and frequency points must satisfy: $\mathrm{V} 1<\mathrm{V} 2<\mathrm{V} 3, \mathrm{f} 1<\mathrm{f} 2<\mathrm{f} 3$. When you set F1 (F3-03), F2 (F3-05) and F3 (F3-07), set F3-07 first, then F3-05 and finally F3-03.
3. Variable-torque Square V/F curve

Figure 6-38 Variable-torque Square V/F curve

Output voltage and output frequency change according to square curve when below rated frequency. It is applicable to applications such as centrifugal fans where the load is inversely proportional to the speed.

V/F Separation Curve

Function Code	Parameter Name	Setting Range	Default
F3-13	Voltage source for V/F separation	0: Set by F3-14 1: Al1 2: Al2 3: Al3 4: Pulse reference (DI5) 5: Multi-reference 6: Simple PLC 7: PID reference 8: Serial comms. 100.0\% corresponds to the rated motor voltage (F1-02, A2-02).	0
F3-14	Digital setting of voltage for V/F separation	0 V to rated motor voltage	0 V
F3-15	Voltage rise time of V/F separation	0.0s to 1000.0s	0.0 s
F3-16	Voltage decline time of V/F separation	0.0s to 1000.0s	0.0 s
F3-17	Stop mode selection for V/F separation	0: Frequency and voltage declining to 0 independently 1: Frequency declining after voltage declines to 0	0

Voltage rise time of V/F separation indicates time required by voltage to rise from 0 to rated motor voltage.

Voltage decline time of V/F separation indicates time required by voltage to decline from rated motor voltage to 0 .

Figure 6-39 V/F separation

6.5.2 Torque Boost

The torque compensation function compensates for insufficient torque production at low frequency.

Function Code	Parameter Name	Setting Range	Default
F3-01	Torque boost	0.0% : No torque boost 0.1% to 30%	Model dependent
F3-02	Cut-off frequency of torque boost	0.00 Hz to max. frequency	50.00 Hz

F3-01 compensates for insufficient torque production by boosting output voltage of the AC drive. But very large setting will result in motor overheat and AC drive overcurrent.

- On starting a heavy load and insufficient torque is experienced, increase the torque boost in F3-01.
- Decrease this parameter on light loads to avoid overheating the motor.

F3-02 sets the cutoff frequency. The torque boost function is disengaged when the output frequency exceeds the cutoff point.

6.5.3 Current Limit Control

When output current exceeds the value set in F3-18 during acceleration, constant running or deceleration, current limit is enabled and output frequency starts to drop. Until output current recovers below the current limit level, output frequency starts to rise to target frequency again.

Figure 6-40 Current limit

Function Code	Parameter Name	Setting Range	Default
F3-18	Current limit level	50% to 200%	150%
F3-19	Current limit selection	0: Disabled 1: Enabled	1
F3-20	Current limit gain	0 to 100	20
F3-21	Compensation factor of speed multiplying current limit	50% to 200%	0

In high frequency area, motor drive current is small. Bigger motor speed dip is caused by current limit level compared with below rated frequency. To improve motor running characteristic, you can lower current limit level above rated frequency.
The current limit function above rated frequency helps to improve acceleration performance in the applications, such as centrifuge, where high running frequency and several times of field weakening are required, and load inertia is large.

The current limit level above rated frequency $=(\mathrm{fs} / \mathrm{fn}) \times \mathrm{k} \times$ LimitCur.

- fs: running frequency
- fn: rated motor frequency
- $\quad \mathrm{k}$: compensation factor of speed multiplying current limit level (F3-21)
- LimitCur: current limit level (F3-18)

Figure 6-41 Current limit above rated frequency

- Current limit level 150% indicates 1.5 times of rated current of the AC drive.
- For high-power motor with carrier frequency below 2 kHz , lower the current limit level. This is because the overcurrent fast prevention function is enabled in advance of the current limit function due to increase of pulsating current, which will result in insufficient torque output.

6.5.4 Voltage Limit and Braking Unit Applied Voltage

When bus voltage rises above the value set in F3-22, the motor becomes regenerative. This function prevents overvoltage trips by adjusting the output frequency to extend deceleration time in this case.

If actual deceleration time cannot satisfy the requirement, increase the value of F3-10 (V/F overexcitation gain) adequately.
Figure 6-42 Voltage limit

Function Code	Parameter Name	Setting Range	Default
F3-22	Voltage limit	650 to 800 V	760 V
F3-23	Voltage limit selection	$0:$ Disabled $1:$ Enabled	1
F3-24	Frequency gain for voltage limit	0 to 100	30
F3-25	Voltage gain for voltage limit	0 to 100	30
F3-26	Frequency rise threshold during voltage limit	0 to 50 Hz	5 Hz
F9-08	Braking unit applied voltage	650 to 800 V	760 V
F3-10	V/F over-excitation gain	0 to 200	64
F3-11	V/F oscillation suppression gain	0 to 100	30
F9-03	Overvoltage protection gain	0 (no overvoltage stall) to 100	770 V
F9-04	Overvoltage protection voltage	650 to 800 V	

Note

When using braking resistor, braking unit or energy feedback unit, pay attention to the following aspects:

- Set F3-10 (V/F over-excitation gain) to 0. Otherwise, too large current may occur during drive running.
- Set F3-23 (overvoltage suppression selection) to 0 (disabled). Otherwise, the deceleration time may become longer.

6.5.5 Speed Loop

Function Code	Parameter Name	Setting Range	Default
F2-00	Speed loop proportional gain 1	0 to 100	30
F2-01	Speed loop integral time 1	0.01 to 10.00 s	0.50 s
F2-02	Switchover frequency 1	0.00 to F2-05	5.00 Hz
F2-03	Speed loop proportional gain 2	0 to 100	20
F2-04	Speed loop integral time 2	0.01 to 10.00 s	1.00 s
F2-05	Switchover frequency 2	F2-02 to max. frequency	10.00 Hz

F2-00 to F2-05 are speed loop PI parameters.

- If running frequency \leq F2-02 (Switchover frequency 1), PI parameters are F2-00 and F2-01.
- If running frequency \geq F2-05 (Switchover frequency 2), PI parameters are F2-03 and F2-04.
- If running frequency is between F2-02 and F2-05, PI parameters are obtained from linear switchover between two groups of PI parameters, as shown in Figure 9-2.

Figure 6-43 Speed loop PI parameters

To improve the system response, increase the proportional gain or reduce the integral time. Remember to increase proportional gain first to ensure that the system does not oscillate, and then reduce integral time to ensure that the system has quick response and small overshoot.

Note

Incorrect PI setting may cause large speed overshoots and a fast falling speed drop may cause an overvoltage on the DC bus.

6.5.6 SVC/FVC Slip Compensation Gain

Function Code	Parameter Name	Setting Range	Default
F2-06	SVC/FVC slip compensation gain	50% to 200%	100%

This function improves control performance in SVC/FVC (F0-01 = 0/1).
For FVC (F0-01 = 1), it can adjust output current of the AC drive. Decrease this parameter gradually when a large rating AC drive is controlling a lightly loaded motor. Adjustment of this parameter is not required normally.

6.5.7 SVC Speed Feedback Stability

Function Code	Parameter Name	Setting Range	Default
F2-07	Speed feedback filter time in SVC	0.000 s to 1.000 s	0.015 s

This parameter takes effect only when F0-01 $=0$. You can improve motor stability by increasing F2-07. Be aware that this may slow dynamic response. Decreasing it will obtain quick system response but may lead to motor oscillation. Adjustment of this parameter is not required normally.

6.5.8 Torque Limit

The torque limit function can be used to limit torque to protect the system. The torque limit can be either set by parameters in group F2 or by parameters in group A0.
Output torque must be limited when the AC drive is in speed control or in torque control (determined by A0-00) in FVC (F0-01 = 1). Torque limit varies with control mode.

Function Code	Parameter Name	Setting Range	Default
A0-00	Speed/Torque control selection	$0:$ Speed control $1:$ Torque control	0

This function parameter determines whether the AC drive is in speed control or torque control.
The AC drive has two digital input functions related to torque control, function 29 "Torque control prohibited" and function 46 "Speed control/Torque control". The two functions must be used together with parameter A0-00 to implement switchover between speed control and torque control.

- When function 46 is enabled, the control mode is determined by setting of A0-00.
- When function 46 is disabled, the control mode is reverse to setting of A0-00.
- When function 29 is enabled, the AC drive always run in speed control no matter whether function 46 is enabled or disabled.

- Setting Torque Limit in Speed Control

$\left.\begin{array}{|l|l|l|l|}\hline \text { Function Code } & \text { Parameter Name } & \text { Setting Range } & \text { Default } \\ \hline \text { F2-09 } & \begin{array}{l}\text { Torque limit source in speed } \\ \text { control }\end{array} & \text { 0: F2-10 } & 0 \\ & & \text { 1: Al1 } \\ & & \text { 2: Al2 } \\ & & \text { 3: Al3 } \\ \text { 4: Pulse reference (DI5) } \\ \text { 5: Serial comms. } \\ \text { 6: Min. (Al1, AI2) } \\ \text { 7: Max. (Al1, Al2) }\end{array}\right]$

Function Code	Parameter Name	Setting Range	Default
F2-11	Torque limit source in speed control (regenerative)	0: F2-10	1: AI
		2: Al2	0
		3: Al3	
		4: Pulse reference (DI5)	
		5: Communication reference	
		6: Min. (Al1, AI2)	
		7: Max. (Al1, Al2)	
		8: F2-12	
F2-12	Digital setting of torque limit in speed control regenerative)	0.0\% to 200.0\%	150.0%

This function parameter restricts output torque of the AC drive in speed control. The torque limits are defined by F2-09 to F2-12.
When F2-11 is set to 0 , the motoring state and regenerative state are not distinguished. The torque limit is defined by F2-10.

When F2-11 is set to 1 to 8 , the motoring state and regenerative state are distinguished. In motoring state, full range of torque limit is set by F2-010. In regenerative state, full range of torque limit is set by F2-12.
Figure 6-44 Torque limit in speed control $=1$, decrease setting of F2-23.

- Setting Torque Limit in Torque Control

Function Code	Parameter Name	Setting Range	Default
A0-00	Speed/Torque control selection	0: Speed control 1: Torque control	0
A0-01	Torque reference source in torque control	$\begin{aligned} & \text { 0: Set by A0-03 } \\ & \text { 1: Al1 } \\ & \text { 2: Al2 } \\ & \text { 3: Al3 } \\ & \text { 4: Pulse reference (DI5) } \\ & \text { 5: Communication reference } \\ & \text { 6: MIN (Al1, Al2) } \\ & \text { 7: MAX (Al1, Al2) } \end{aligned}$	0
A0-03	Torque digital setting in torque control	-200.0\% to 200.0\%	150.0\%

These two function parameters select channel of setting torque reference in torque control.

Torque reference is a relative value. 100.0\% corresponds to rated AC drive torque (can be viewed in U0-06). When torque reference is a positive value, the AC drive runs in forward direction. When torque reference is a negative value, the AC drive runs in reverse direction.

Function Code	Parameter Name	Setting Range	Default
A0-05	Forward max. frequency in torque control	0.00 Hz to max. frequency (F0-10)	50.00 Hz
A0-06	Reverse max. frequency in torque control	0.00 Hz to max. frequency (F0-10)	50.00 Hz

These function parameters set maximum frequency of the AC drive in forward and reverse directions in torque control.

Motor speed will rise continuously if load torque is smaller than motor output torque. This function limits motor speed in torque control to prevent runaway.

Function Code	Parameter Name	Setting Range	Default
A0-07	Acceleration time in torque control	0.00 s to 65000s	0.00 s
A0-08	Deceleration time in torque control	0.00 s to 65000s	0.00 s

These function parameters set acceleration/deceleration time in torque control to implement smooth change of motor speed. This helps to prevent problems such as big noise or too large mechanical stress caused by quick change of motor speed.

But in applications where rapid torque response is required, for example, two motors are used to drive the same load, you need to set these two parameters to 0.00 s .

For example, two motors drive the same load. To balance the load level of the two motors, set one drive as master in speed control and set the other as slave in torque control.

The slave will follow output torque of the master as its torque reference, which requires quick response to the master output torque. In this case, set acceleration/deceleration time of the slave in torque control to 0.00 s .

6.5.8 Current Loop

Function Code	Parameter Name	Setting Range	Default
F2-13	Excitation adjustment proportional gain	0 to 60000	2000
F2-14	Excitation adjustment integral gain	0 to 60000	1300
F2-15	Torque adjustment proportional gain	0 to 60000	2000
F2-16	Torque adjustment integral gain	0 to 60000	1300

These function parameters are vector control current loop PI parameters. They are obtained from motor auto-tuning. Adjustment of these parameter is not required normally.

The dimension of current loop integral regulator is integral gain rather than integral time. Very large current loop PI gain may lead to control loop oscillation. When current oscillation or torque fluctuation is great, decrease the proportional gain or integral gain.

6.5.9 Improving Field Weakening Area Performance

Function Code	Parameter Name	Setting Range	Default
A5-05	Voltage over modulation coefficient	100% to 110%	105%

This parameter indicates boost capacity of maximum voltage of the AC drive. Increasing A5-05 will improve max. loading capacity in motor field weakening area. Be aware that this may lead to an increase in motor current ripple and an increase in motor heating.

Decreasing it will reduce motor current ripple and motor heating. Be aware that this will lower max. loading capacity in motor field weakening area. Adjustment of this parameter is not required normally.

Function Code	Parameter Name	Setting Range	Default
F2-21	Max. torque coefficient of field weakening area	50% to 200%	100%

This parameter takes effect only when the motor runs above the rated motor frequency.
When the motor need rapidly accelerate to twice of rated motor frequency but actual acceleration time is very long, decrease the setting of F2-21 adequately.
When the motor runs above twice of rated motor frequency and speed dip is very large after a load is added, increase the setting of F2-21 adequately. Adjustment of this parameter is not required normally.

6.5.10 Auxiliary Control

Function Code	Parameter Name	Setting Range	Default
A5-00	DPWM switchover frequency upper limit	0.00 to 15.00 Hz	12.00 Hz

Increasing this parameter to the max. frequency will reduce motor audible noise.

Function Code	Parameter Name	Setting Range	Default
A5-01	PWM modulation pattern	0: Asynchronous modulation $1:$ Synchronous modulation	0

When the output current oscillates or large current harmonics occur, set A5-01 $=1$.

Function Code	Parameter Name	Setting Range	Default
A5-03	Random PWM depth	0: Random PWM invalid 1 to 10	0

This parameter helps to lower motor audible noise and reduce electromagnetic interference.

6.6 Protections

This section introduces functions on protecting the AC drive and motor.

6.6.1 Motor Overload Protection

Function Code	Parameter Name	Setting Range	Default
F9-00	Motor overload protection	0: Disabled $1:$ Enabled	1
F9-01	Motor overload protection gain	0.20 to 10.00	1.00

- $\mathrm{F} 9-00=0$: The motor overload protection is disabled. In this case, install a thermal relay between the AC drive output ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) and the motor.
- $\mathrm{F} 9-00=1$: The motor overload protection function has an inverse load-time characteristics.

If the motor overload current level and overload protection time need be adjusted, modify setting of F9-01.
The inverse load-time characteristic is shown in the following figure.
Figure 6-45 Inverse time-lag curve

When motor running current reaches 175% of rated motor current and motor runs at this level for 2 minutes, Err11 (motor overload) is detected. When motor running current reaches 115% of rated motor current and motor runs at this level for 80 minutes, Err11 is detected.

Suppose that rated motor current is 100 A .

- F9-01 = 1.00: According to Figure 7-47, when motor running current reaches 125 A (125% of 100 A) and motor runs at 125 Afor 40 minutes, Err11 is detected.
- F9-01 = 1.20: According to Figure 7-47, when motor running current reaches 125 A (125% of 100 A) and motor runs at 125 A for $40 \times 1.2=48$ minutes, Err11 is detected.

Note

It is important to study and understand the thermal performance and capacity of the motor in use. Motor data is available from the motor manufacturer. It necessary to set the motor overload function/parameters correctly in order to protect the motor from a sustained overload. The AC drive default settings do not automatically match and protect the motor.

For example, application requires detect of Err11 when motor runs at 150% of rated motor current for two minutes.

According to Figure $7-47,150 \%$ (I) is in the range of 145% (I1) and 155% (I2). 145% corresponds to overload protection time 6 minutes (T1) and 145% corresponds to overload protection time 4 minutes (T2). You can calculate overload protection time T corresponding to 150% from the following formula:
$\mathrm{T}=\mathrm{T} 1+(\mathrm{T} 2-\mathrm{T} 1) \times(\mathrm{I}-\mathrm{I} 1) /(\mathrm{I}-\mathrm{I} 1)=4+(6-4) \times(150 \%-145 \%) /(155 \%-145 \%)=5$ minutes
Then calculate motor overload protection gain from the following formula: F9-01 = Desired overload protection time / Corresponding overload protection time $=2 / 5=0.4$.

Note	The motor should be fitted with overtemperature sensors (e.g PTC) and wired to a protection relay. Such protection devices measure actual motor winding temperature and is the ultimate protection.

Function Code	Parameter Name	Setting Range	Default
F9-02	Motor overload pre-warning coefficient	50% to 100%	80%

The AC drive has the motor overload pending function that reminds of motor overload in advance through digital output function 6.

On the condition that F9-01 $=1.00$ and F9-02 $=80 \%$, when motor running current reaches 145% of rated motor current and motor runs at this level for $80 \% \times 6=4.8$ minutes, $D O$ terminal or fault relay outputs the motor overload pending signal.

When F9-02 $=100 \%$, the motor overload pending and the motor overload protection are performed simultaneously.

6.6.2 Phase Loss Protection

Function Code	Parameter Name	Setting Range	Default
F9-12	Input phase loss/pre- charge relay protection	0: Disabled 1: Enabled	11
		Units position: Input phase loss protection	
		Tens position: Pre-charge relay protection	

This function parameter determines whether to perform input phase loss or pre-charge relay protection.

Function Code	Parameter Name	Setting Range	Default
F9-13	Output phase loss protection	0: Disabled $1:$ Enabled	01
		Units position: Output phase loss protection	
		Tens position: Output phase loss protection before running	

Units position: It determines whether to perform output phase loss protection. If protection is disabled but power output phase loss occurs, the AC drive does not detect the fault. At this moment, actual current is larger than the current displayed on the operating panel.

Tens position: It takes about several seconds to detect output phase loss during running. In lowfrequency running application or application where risks exist in start with phase loss, set this position to 1 . In applications which have strict requirements on start time, set this position to 0 .

6.6.3 Fault Reset

Function Code	Parameter Name	Setting Range	Default
F9-09	Auto reset times	0 to 20	0

This function parameter sets permissible times of auto fault reset. If reset times exceed the value set in this parameter, the AC drive will keep fault status.

Note	$\left.$-Undervoltage (Err09) is reset automatically when bus voltage recovers to normal. It is not included in auto reset times. - Short-circuit to ground (Err23) cannot be reset automatically or manually. It can only be reset after power down.${ }^{\mid} \right\rvert\,$

Function Code	Parameter Name	Setting Range	Default
F9-10	Selection of DO action during auto reset	0: Not act $1:$ Act	0

This function parameter decides whether digital output terminal set for fault output acts during the fault reset.

Function Code	Parameter Name	Setting Range	Default
F9-11	Delay of auto reset	0.1 s to 100.0 s	1.0 s

This function parameter sets the delay of auto reset after the AC drive detects a fault.

6.6.4 Fault Protection Action Selection

Function Code	Parameter Name	Setting Range	Default
F9-47	Fault protection action selection 1	0: Coast to stop	00000
		1: Stop according to the stop mode	
		2: Continue to run	
		Units position: Motor overload (Err11)	
		Tens position: Input phase loss (Err12)	
		Hundreds position: Output phase loss (Err13)	
		Thousands position: External fault (Err15)	
		Ten thousands position: Communication fault (Err16)	
F9-48	Fault protection action selection 2	Units position: Encoder fault (Err20)	00000
		0: Coast to stop	
		1: Switch over to V/F control, stop according to stop mode	
		2: Switch over to V/F control, continue to run	
		Tens position: EEPROM read-write fault (Err21)	
		0 : Coast to stop	
		1: Stop according to the stop mode	
		Hundreds position: Reserved	
		Thousands position: Motor overheat (Err25)	
		Same as F9-47	
		Ten thousands position: Accumulative running time reached (Err26)	
		Same as F9-47	

Function Code	Parameter Name	Setting Range	Default
F9-49	Fault protection action selection 3	Units position: User-defined fault 1 (Err27)	00000
		Tens position: User-defined fault 2 (Err28)	
		Hundreds position: User-defined fault 3 (Err29)	
		Thousands position: Load lost (Err30)	
		1: Stop according to the stop mode	
		2: Continue to run at 7% of rated motor frequency and restore to the frequency reference if the load recovers	
		Ten thousands position: PID feedback lost during drive running (Err31) Same as F9-47	
F9-50	Fault protection action selection 4	0: Coast to stop 1: Stop according to the stop mode 2: Continue to run	00000
		Units position: Too large speed feedback error (Err42)	
		Tens position: Motor overspeed (Err43)	
		Hundreds position: Initial position fault (Err51)	
		Thousands position: Speed feedback fault (Err52)	
		Ten thousands position: Reserved	

0 : Coast to stop
The AC drive displays Err** and directly stops.
1: Stop according to the stop mode
The AC drive displays $\mathrm{A}^{* *}$ and stops according to stop mode. After stop, the AC drive displays Err**.

2: Continue to run
The AC drive continues to run and displays $A^{* *}$. The running frequency is set in F9-54.

Function Code	Parameter Name	Setting Range	Default
F9-54	Frequency selection for continuing to run upon fault	0: Current running frequency 1: Frequency reference 2: Frequency upper limit 3: Frequency lower limit 4: Backup frequency upon abnormality	0
F9-55	Backup frequency upon fault	0.0% to 100.0% (max. frequency)	100.0%

These function parameters define running frequency of the AC drive when "Continue to run" is selected at occurrence of fault.

6.6.5 Motor Overheat Protection

Function Code	Parameter Name	Setting Range	Default
F9-56	Type of motor temperature sensor	0: No temperature sensor $1:$ PT100 $2: ~ P T 1000$	0
F9-57	Motor overheat protection threshold	$0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$
F9-58	Motor overheat pre-warning threshold	$0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$

A motor temperature sensor can be connected to Al3 and PGND on extension I/O card. This input is used by the drive for motor overheat protection.
When input signal reaches the value set in F9-57, the AC drive detects Err25 and acts as selected in thousands position in F9-48. When input signal reaches the value set in F9-58, digital output terminal set for function 39 becomes on.

The drive supports both PT100 and PT1000. Make sure to set sensor type correctly. You can view motor temperature in U0-34.

6.6.6 Power Dip Ride-through

The power dip ride-through function ensures the system to run continuously at occurrence of momentary power loss.

When an instantaneous power loss occurs, the AC drive compensates DC bus voltage reduction with real-time energy feedback by reducing output frequency, preventing the AC drive from stopping due to undervoltage.

- F9-59 = 1: It is applicable to large-inertia applications such as fan, water pump and centrifuge
- F9-59 = 2: It is applicable to the textile industry.

Figure 6-46 Power dip ride-through

Power dip ride-through

F9-61

Function Code	Parameter Name	Setting Range	Default
F9-59	Power dip ride-through function selection	0: Disabled 1: Bus voltage constant control 2: Decelerate to stop	0
F9-60	Threshold of power dip ride- through function disabled	85% to 120%	85%
F9-61	Judging time of bus voltage recovering from power dip	0.1 s to 10.0s	0.5 s
F9-62	Threshold of power dip ride- through function enabled	60% to 85\% (standard bus voltage)	80.0%
F9-71	Power dip ride-through gain Kp	0 to 100	40
F9-72	Power dip ride-through integral coefficient	0 to 100	20.0 s
F9-73	Deceleration time of power dip ride-through	0.0 s to 300.0 s	

Note - In bus voltage constant control, when line voltage recovers, the AC drive accelerates to target frequency.

- In deceleration to stop mode, when line voltage recovers, the AC drive continues to decelerate to 0 Hz and stops. The AC drive will not be started until it receives RUN command again.

6.6.7 Load Lost Protection

Function Code	Parameter Name	Setting Range	Default
F9-63	Load lost protection	0: Disabled $1:$ Enabled	0
F9-64	Load lost detection level	0.0% to 100.0% (rated motor current)	10.0%
F9-65	Load lost detection time	0.0 s to 60.0 s	1.0 s

These function parameters define the load lost protection function.
When output current of the AC drive falls below detection level (F9-64) for longer than time set in F9-65, the AC drive automatically reduces output frequency to 7% of rated frequency. Once load recovers during protection, the AC drive accelerates to frequency reference.

6.6.8 Overspeed Protection

Function Code	Parameter Name	Setting Range	Default
F9-67	Overspeed detection level	0.0% to 50.0% (max. frequency)	20.0%
F9-68	Overspeed detection time	0.0 s to 60.0 s	1.0 s

These function parameters define motor overspeed detection that is effective only for vector control with speed sensor.

When detected motor speed exceeds maximum frequency and the excess is larger than the value of F9-67 for longer than time set in F9-68, the AC drive detects Err43 and acts as selected in the tens position in F9-50.

If F9-68 is set to 0 , motor overspeed detection is disabled.

6.6.9 Speed Error Protection

Function Code	Parameter Name	Setting Range	Default
F9-69	Detection level of speed error	0.0% to 50.0% (max. frequency)	20.0%
F9-70	Detection time of speed error	0.0 s to 60.0 s	5.0 s

This function is effective only for vector control with speed sensor.
When detected motor speed is different from frequency reference and the difference is larger than the value of F9-69 for longer than the time set in F9-70, the AC drive detects Err42 and acts as selected in the units position in F9-50.
6.6.10 Undervoltage \& Overvoltage Threshold and Overcurrent Fast Prevention

Function Code	Parameter Name	Setting Range	Default
A5-06	Undervoltage threshold	210 to 420 V	350 V
A5-09	Overvoltage threshold	650 to 820 V	820 V
A5-04	Overcurrent fast prevention	0: Disabled $1:$ Enabled	1

When DC bus voltage exceeds the setting of A5-06/A5-09, the AC drive detects Err09/Err05Err07.

It is suggested that overcurrent fast prevention is disabled (A5-04 = 0) in hoist applications such as crane.

6.6.11 Output Overcurrent Protection

This is to provide overcurrent protection for the AC drive.
If the drive's output current is equal to or smaller than the value set in F8-36 and the duration exceeds the value set in F8-37, digital output terminal set for function 36 becomes on

Figure 6-47 Output current limit

Function Code	Parameter Name	Setting Range	Default
F8-36	Output overcurrent threshold	0.0% (no detection) 0.1% to 300.0% (rated motor current)	200.0%
F8-37	Output overcurrent detection delay	0.00 s to 600.00s	0.00 s

6.7 Monitoring

The monitoring function enables you to view AC drive state in LED display area on the operation panel.
You can monitor AC drive status in the following two ways:

- View F7-03, F7-04 and F7-05 by pressing D on the operation panel.
- View parameters in group U0 via the operation panel

View F7-03, F7-04 and F7-05 by Pressing the Shift Key
A maximum of 32 parameters in the running status can be viewed in F7-03 and F7-04. The display starts from the lowest bit of F7-03. A total of 13 parameters in the stop can be viewed in F7-05.

If a parameter needs to be displayed during running, set corresponding bit to 1 , convert the binary number to hexadecimal equivalent, and set related parameter to hexadecimal number.

For example, to view running frequency, bus voltage, output voltage, output current, output power and PID reference, do as follows:

- Set bit 0 , bit 2 , bit 3 , bit 4 , bit 5 and bit 15 of F7-03 to 1 and convert binary number 1000 000000111101 to equivalent hexadecimal number 803D.

- Press the enitar key on the operation panel.

The operation panel displays $F 7-14$.

- Press the prag key twice on the operation panel.

The display of the operation panel starts from bit 0 (the lowest bit) in F7-03.

- Press the \triangle key to view the running frequency, bus voltage, output voltage, output current, output power and the PID reference.

You can view the other parameters in the same way.
Conversion of numbers
The following table tells you how to convert a binary number into the hexadecimal equivalent.

Binary	111	1110	1101	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001	0000
Decimal	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Hex	F	E	D	C	B	A	9	8	7	6	5	4	3	2	1	0

Every four binary digits from right to left corresponds to a hexadecimal digit. If the highest binary digit is 0 , fill up it with 0 . Then convert the binary number into decimal equivalent and then convert the decimal number into hexadecimal equivalent.

For example, the binary number is 01111011111 1001. The highest binary digit is 0 and you need to fill up it with 0 . The complete binary number is 001111011111 1001. According to the preceding table, the hexadecimal equivalent is 3DF9.

Function Code	Parameter Name	Setting Range	Default
F7-03	LED display running parameters 1	0000 to FFFF If a parameter needs to be displayed during running, set corresponding bit to 1 , and set F7-03 to hexadecimal equivalent.	1F
F7-04	LED display running parameters 2	0000 to FFFF If a parameter needs to be displayed during running, set corresponding bit to 1, and set F7-04 to hexadecimal equivalent.	33

Note

- Once the AC drive is re-powered on after power down, the display includes the selected parameters before power down by default.
- If parameters to be monitored cannot be found in F7-03, F7-04 and F7-05, view them in group U0.
- View Parameters in Group U0

You can view parameter values by using operation panel, convenient for on-site commissioning, or from the host computer by means of communication (address: $0 \times 7000-0 \times 7044$).
U0-00 to U0-31 are the monitoring parameters in the running and stop status defined by F7-03 and F7-04.

Function Code	Parameter Name	Display Range
Group U0: Monitoring Parameters		
U0-00	Running frequency	0.00 to 500.00 Hz
U0-01	Frequency reference	0.00 to 500.0 Hz
U0-02	Bus voltage	0.0 to 3000.0 V
U0-03	Output voltage	0 to 1140 V
U0-04	Output current	0.00 to $655.35 \mathrm{~A}(\mathrm{AC}$ drive power $\leq 55 \mathrm{~kW})$ U0-05 Output power
U0-06	Output torque	0 to 32767

Function Code	Parameter Name	Display Range
U0-07	Dl state	0 to 32767

U0-07: It displays state of DI terminals. After the value is converted into a binary number, each bit corresponds to a DI. " 1 " indicates high level signal, and " 0 " indicates low level signal. The corresponding relationship between bits and DIs is described in the following table:

Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	Bit8	Bit9
DI1	DI2	DI3	DI4	DI5	DI6	DI7	DI8	DI9	DI10
Bit10	Bit11	Bit12	Bit13	Bit10	Bit11	Bit12	Bit13	Bit14	Bit15
VDI1	VDI2	VDI3	VDI4	VDI1	VDI2	VDI3	VDI4	VDI5	-

Function Code	Parameter Name	Display Range
U0-08	DO state	0 to 1023

U0-08: It displays state of DO terminals. After the value is converted into a binary number, each bit corresponds to a DO. "1" indicates high level signal, and "0" indicates low level signal. The corresponding relationship between bits and DOs is described in the following table.

Bit0	Bit1	Bit2	Bit3	Bit4	Bit5
DO3	Relay 1	Relay 2	DO1	DO2	VDO1
Bit6	Bit7	Bit8	Bit9	Bit10	Bit11
VDO2	VDO3	VDO4	VDO5	-	-

Function Code	Parameter Name	Display Range
U0-10	Al2 voltage $(\mathrm{V}) /$ current (mA)	0.00 to 10.57 V
		0.00 to 20.00 mA

U0-10: Whether AI2 receives voltage input or current input is determined by setting of jumper J9 on the control board.

Function Code	Parameter Name	Display Range
U0-14	Load speed display	0 to rated motor speed
U0-15	PID reference	0 to 65535
U0-16	PID feedback	0 to 65535
U0-18	Pulse reference	0.00 to 100.00 kHz

Function Code	Parameter Name	Display Range
U0-19	Feedback speed	-320.00 to 320.00 Hz
		-500.0 to 500.0 Hz

U0-19: It displays actual output frequency of the AC drive.
The tens position of F7-12 (Number of decimal places for load speed display) determines the number of decimal places of U0-19/U0-29.

- If the tens position is set to 2, the display range is -320.00 to 320.00 Hz .
- If the tens position is set to 1 , the display range is -500.0 to 500.0 Hz .

Function Code	Parameter Name	Display Range
U0-20	Remaining running time	0.0 to 6500.0 min

U0-20: It displays remaining running time during drive timing running.

Function Code	Parameter Name	Display Range
U0-21	Al1 voltage before correction	0.00 to 10.57 V
U0-22	Al2 voltage $(\mathrm{V}) /$ current (mA) before correction	0.00 to 10.57 V 0.00 to 20.00 mA
U0-23	Al3 voltage before correction	-10.57 to 10.57 V

U0-21 to U0-23: They display sampled AI input voltage (before correction). Actually used Al input voltage after correction are displayed in U0-09, U0-10 and U0-11.

Function Code	Parameter Name	Display Range
U0-24	Motor speed	0 to rated motor speed

U0-24: It displays linear speed of DI5 used for high-speed pulse sampling. The unit is meter/ minute. Linear speed is obtained according to actual number of pulses sampled per minute and Fb-07 (Number of pulses per meter).

Function Code	Parameter Name	Display Range
U0-27	Pulse reference	0 to 65535 Hz

U0-27: It displays DI5 high-speed pulse sampling frequency, in minimum unit of 1 Hz . It is the same as U0-18, except for difference in units.

Function Code	Parameter Name	Display Range
U0-28	Communication reference	-100.00% to 100.00%

U0-28: It displays data written by means of communication address 0×1000.

Function Code	Parameter Name	Display Range
U0-29	Encoder speed feedback	-320.00 to 320.00 Hz
		-500.0 to 500.0 Hz

U0-29: It displays motor running frequency measured by encoder.
The tens position of F7-12 (Number of decimal places for load speed display) determines the number of decimal places of U0-19/U0-29.

- If the tens position is set to 2 , the display range is -320.00 to 320.00 Hz .
- If the tens position is set to 1 , the display range is -500.0 to 500.0 Hz .

Function Code	Parameter Name	Display Range
U0-30	Main frequency reference	0.00 to 500.00 Hz
U0-31	Auxiliary frequency reference	0.00 to 500.00 Hz
U0-34	Motor temperature	$0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
U0-35	Target torque	-200.0% to 200.0%
U0-36	Resolver position	0 to 4095
U0-37	Power factor angle	-

Function Code	Parameter Name	Display Range
U0-38	ABZ position	0 to 65535

U0-38: It displays phase A and B pulse counting of current ABZ or UVW encoder. This value is four times the number of pulses that encoder runs. For example, if the display is 4000 , actual number of pulses that encoder runs is $4000 / 4=1000$.

The value increases when encoder rotates in forward direction and decreases when encoder rotates in reverse direction. After increasing to 65535, the value restarts to increase from 0 . After decreasing to 0 , the value restarts to decrease from 65535.
You can check whether installation of encoder is normal by viewing U0-38.

Function Code	Parameter Name	Display Range
U0-39	Target voltage upon V/F separation	0 V to rated motor voltage
U0-40	Output voltage upon V/F separation	0 V to rated motor voltage

U0-39 and U0-40: They display target output voltage and current actual output voltage in V/F separation status.

Function Code	Parameter Name	Display Range
U0-41	DI state display	-

U0-41: It displays DI state and the display format is shown as below:

Function Code	Parameter Name	Display Range
U0-42	DO state display	-

U0-42: It displays DO state and the display format is shown as below:

Function Code	Parameter Name	Display Range
U0-43	DI set for function state display 1	-

U0-43: It displays whether DI terminals set for functions 1 to 40 are active. The operation panel has five 7-segment LEDs and each 7-segment LED displays selection of eight functions. The 7segment LED is defined as below:

Function Code	Parameter Name	Display Range
U0-44	DI set for function state display 2	-

U0-44: It displays whether DI terminals set for functions 41 to 59 are active. The display format is similar to U0-43. The 7 -segment LEDs display functions 41-48, 49-56 and 57-59, respectively from right to left.

Function Code	Parameter Name	Display Range
U0-58	Phase Z counting	0 to 65535

U0-58: It displays phase Z counting of current ABZ or UVW encoder. The value increases or decreases by 1 every time encoder rotates one revolution forwardly or reversely. You can check whether installation of encoder is normal by viewing U0-58.

Function Code	Parameter Name	Display Range
U0-59	Frequency Reference	-100.00% to 100.00%
U0-60	Running frequency	-100.00% to 100.00%

Function Code	Parameter Name	Display Range
U0-61	AC drive state	0 to 65535

U0-61: It displays the drive state. The data format is listed in the following table:

Bit0	0: Stop 1: Forward 2: Reverse
Bit1	0: Constant 1: Accelerate 2: Decelerate
Bit3	0: Bus voltage normal $1:$ Undervoltage
Bit4	

Function Code	Parameter Name	Display Range
U0-62	Current fault code	0 to 99
U0-63	Sending value of point-point communication	-100.00% to 100.00%
U0-64	Number of slaves	0 to 63
U0-65	Torque upper limit	-200.00% to 200.00%
U0-74	AC drive output torque	-200.0% to 200.00%
U0-76	Low bits of accumulative power consumption	0.0 to $999.0\left(\mathrm{~min}\right.$. unit: $\left.0.1^{\circ}\right)$
U0-77	High bits of accumulative power consumption	0 to $65535\left(\mathrm{~min}\right.$. unit: $\left.1^{\circ}\right)$
U0-78	Linear speed	0 to 65535

6.8 Process Control

This section introduces three commonly used process control functions, the wobble function, fixed length and counting.

6.8.1 The Wobble Function

The wobble function is applicable to industries such as textile and chemical fiber and winding and unwinding applications. It indicates output frequency wobbles up and down with frequency reference as center.

Figure 6-48 Application of the wobble function

The trace of running frequency at time axis is shown in the following figure.
Figure 6-49 The wobble function schematic diagram

Related function parameters are as follows:

Function Code	Parameter Name	Setting Range	Default
Fb-00	Wobble setting mode	0: Relative to the frequency reference $1:$ Relative to the max. frequency	0

This function parameter selects base value of wobble amplitude.

Function Code	Parameter Name	Setting Range	Default
Fb-01	Wobble amplitude	0.0% to 100.0%	0.0%
Fb-02	Wobble step	0.0% to 50.0%	0.0%

Fb-01 and Fb-02: These function parameters set wobble amplitude and wobble step.

- When Fb-00 $=0$, Aw (wobble amplitude) $=$ F0-07 (Frequency source superposition selection) x Fb-01.
- When $\mathrm{Fb}-00=1, \mathrm{Aw}$ (wobble amplitude) $=$ F0-10 (Max. frequency) \times Fb-01.

Wobble step frequency $=$ Aw (wobble amplitude) \times Fb-02 (Wobble step). The wobble running frequency must be within frequency upper limit and frequency lower limit.

Function Code	Parameter Name	Setting Range	Default
Fb-03	Wobble cycle	0.0 s to 3000.0 s	10.0 s
Fb-04	Triangular wave rising time coefficient	0.0% to 100.0%	50.0%

Fb-03: It specifies time of a complete wobble cycle.
$\mathrm{Fb}-04$: It is percentage of triangular wave rising time to $\mathrm{Fb}-03$ (Wobble cycle).

- Triangular wave rising time $=\mathrm{Fb}-03$ (Wobble cycle) \times FB-04 (Triangular wave rising time coefficient, unit: s)
- Triangular wave falling time $=\mathrm{Fb}-03$ (Wobble cycle) $\mathrm{x}(1-\mathrm{Fb}-04$ Triangular wave rising time coefficient, unit: s)

6.8.2 Fixed Length Control

The drive has the fixed length control function. The length pulses can only be sampled by DI5.
Set DI5 for function 27 "Length signal pulses count".

Function Code	Parameter Name	Setting Range	Default
Fb-05	Set length	0 to 65535 m	1000 m
Fb-06	Actual length	0 to 65535 m	0 m
Fb-07	Number of pulses per meter	0.1 to 6553.5	100.0

In the following figure, actual length is a monitored value.
Actual length (Fb-06) = Number of pulses sampled by DI is divided by Fb-07 (Number of pulses each meter).
When actual length reaches the value set in Fb-05, digital output terminal set for function 10 "Length reached" becomes on. Length reset can be implemented via DI terminal set for function 28 "Length reset".

Figure 6-50 Fixed length control

Settings of related function parameters in the preceding figure are as follows:

Function Code	Parameter Name	Setting	Description
F4-04	DI5 function selection	27	Length pulses counting input
Any of F4-00 to F4-09	DIx function selection	28	Length reset
Any of F5-00 to F5-05	DOx function selection	10	Length reached

Note

- Only length can be calculated according the number of pulses but rotation direction will not be obtained in fixed length control.
- An automatic stop system can be implementing by connecting output length reached signal of relay to the stop input terminal.

6.8.3 Counting

The drive has the counting function. The sampling DI terminal must be set for function 25 "Counter input ". For high pulse frequency, use terminal DI5.

Function Code	Parameter Name	Setting Range	Default
Fb-08	Set count value	1 to 65535	1000
Fb-09	Designated count value	1 to 65535	1000

In the following figure, When the counting value reaches the level set in $\mathrm{Fb}-08$, digital output terminal set for function 8 "Set count value reached" becomes on. When the counting value reaches the level set in Fb -09, digital output terminal set for function 9 "Designated count value reached" becomes on.

Figure 6-51 Counting function

The settings of related function parameters in the preceding figure are as follows:

Function Code	Parameter Name	Setting	Description
Any of F4-00 to F4-09	DIx function selection	25	Counter input
Any of F4-00 to F4-09	DIx function selection	26	Counting reset
Any of F5-00 to F5-05	DOx function selection	8	Set counting value reached
Any of F5-00 to F5-05	DOx function selection	9	Designated counting value reached

Note

- For high pulse frequency, use terminal DI5.
- You cannot allocate "Set counting value reached" function and "Designated counting value reached" function to the same DO terminal.
- The counter keeps counting in the drive running/stop status. It stops counting until the set counting value is reached.
- The counting value is retentive at power down.
- An automatic stop system can be implementing by connecting the output counting value reached signal of DO to the stop input terminal.

6.8.4 Motor 2 Parameters

The drive supports driving two motors at different time. For the two motors, you can:

- Set motor nameplate parameters respectively
- Perform motor auto-tuning respectively
- Select V/F control or vector control respectively
- Set encoder-related parameters respectively
- Set parameters related to V/F control or vector control independently

Motor 2 parameters are defined the same as motor 1 parameters. For details on motor 1 parameters, see descriptions of these parameters in 6.4 Motor Auto-tuning.

You can select the desired motor parameter group in FO-24 or via a DI terminal

1. Select the desired motor parameter group in $\mathrm{FO}-24$.

Function Code	Parameter Name	Setting Range	Default
F0-24	Motor parameter group selection	0: Motor parameter group 1 1: Motor parameter group 2	0

2. Select the desired motor parameter group via a DI terminal.

Set any DI (F4-00 to F4-09) for function 41 "Motor selection". If the DI is inactive, motor parameter group 1 is selected. If the DI is active, motor parameter group 2 is selected.

Function Code	Parameter Name	Setting	Description
Any of F4-00 to F4-09	Dlx function selection	41	Motor selection

Note

- If any of F4-00 to F4-09 is set for function 41 "Motor selection", DI terminal overrides F0-24. If none of F4-00 to F4-09 is set for function 41 "Motor selection", motor selection is determined by F0-24.
- Switchover of two groups of motor parameters is prohibited during drive running. Otherwise, the drive detects Err41.

Function Code	Parameter Name	Setting Range	Default
A2-00	Motor type selection	0 to 1	0
A2-01	Rated motor power	0.1 to 1000.0 kW	Model dependent
A2-02	Rated motor voltage	1 to 2000 V	Model dependent
A2-03	Rated motor current	0.01 to $655.35($ AC drive power $\leq 55 \mathrm{~kW})$ 0.1 to 6553.5 (AC drive power $>55 \mathrm{~kW})$	Model dependent
A2-04	Rated motor frequency	0.01 to max. frequency	Model dependent
A2-05	Rated motor speed	1 to 65535	Model dependent
A2-06	Stator resistance	0.001 to 65.535 (AC drive power $\leq 55 \mathrm{~kW}$)	Auto-tuning parameter
A2-07	Rotor resistance	0.001 to $65.535($ AC drive power $\leq 55 \mathrm{kW)}$	Auto-tuning parameter

Function Code	Parameter Name	Setting Range	Default
A2-08	Leakage inductive reactance	0.01 to 655.35 (AC drive power $\leq 55 \mathrm{~kW}$) 0.001 to 65.535 (AC drive power $>55 \mathrm{~kW}$)	Auto-tuning parameter
A2-09	Mutual inductive reactance	0.1 to 6553.5 (AC drive power $\leq 55 \mathrm{~kW}$) 0.01 to 655.35 (AC drive power > 55 kW)	Auto-tuning parameter
A2-10	No-load current	0.01 to F1-03 (AC drive power $\leq 55 \mathrm{~kW}$) 0.1 to F1-03 (AC drive power > 55 kW)	Auto-tuning parameter
A2-27	Encoder pulses per revolution	1 to 65535	1024
A2-28	Encoder type	0 to 2	0
A2-29	Speed feedback PG selection	0 to 2	0
A2-30	A/B phase sequence of $A B Z$ incremental encoder	0 to 1	0
A2-31	Encoder installation angle	0.0 to 359.9	0.0
A2-34	Number of pole pairs of resolver	1 to 65535	1
A2-37	Auto-tuning selection	0 to 3	0

6.8.5 User Programmable Card

You can implement control of the AC drive by PLC programming by connecting user programmable card GT60PC1 to the drive to satisfy various process requirements.

For details of GT60PC1, see the User Programmable Card User guide. The function of this card must be used together with parameters in group A7.
Figure 6-52 User programmable function

Figure 6-53 User programmable function (2)

Figure 6-54 The user programmable use schematic (3)

Parameter Settings of Controlling GT600 by PLC Programming Function

1. Set whether user programmable card is valid.

Function Code	Parameter Name	Setting Range	Default
A7-00	User programmable function selection	0: Disabled 1: Enabled	0

2. Set Al 3 and AO 2 function on user programmable card.

Function Code	Parameter Name	Setting Range	Default
A7-02	User programmable card AI3 and AO2 function selection	0 to 7	0
		0 : Al3 (voltage input), AO2 (voltage output)	
		1: AI3 (voltage input), AO2 (current output)	
		2: AI3 (current input), AO2 (voltage output)	
		3: AI3 (current input), AO2 (current output)	
		4: AI3 (PTC input), AO2 (voltage output)	
		5: Al3 (PTC input), AO2 (current output)	
		6: AI3 (PT100 input), AO2 (voltage output)	
		7: Al3 (PT100 input), AO2 (current output)	

The user programmable card provides an analog input terminal AI3 and an analog output terminal AO2. Set DIP switch S1, jumper J2 and jumper J3 on the card and then set A7-02. Setting of S1, S2 and J3 must be consistent with setting in A7-02. Otherwise, communication will be abnormal.
3. Set the AC drive output signals

When $\mathrm{A} 7-00=1$ (user programmable card is enabled), you can set control source of output terminals (FMR, relay, DO1, FMP and AO1) of the AC drive in A7-01.

When an output terminal is controlled by PLC program, output of terminal is determined by setting of corresponding function parameter A7-03/A7-04/A7-05.

You can implement control of output terminal via PLC program by modifying A7-03/ A7-04/A7-05.

Function Code	Parameter Name	Setting Range	Default
A7-01	Control board output terminal control mode selection	00000 to 11111	00000
		0 : AC drive control	
		1: User programmable card control	
		Units position: FMR (FM used as digital output)	
		Tens position: Relay (T/A-T/B-TC)	
		Hundreds position: DO1	
		Thousands position: FMP (FM used as pulse control)	
		Ten thousands position: AO1	
A7-03	PLC program controls the FMP output	0.0\% to 100.0\%	0.0\%
A7-04	PLC program controls the AO1 output	0.0\% to 100.0\%	0.0\%
A7-05	Selection of PLC program controlling digital output	000 to 111 0 : Disabled 1: Enabled	000
		Units position: FMR	
		Tens position: Relay	
		Hundreds position: DO1	

The base value of A7-03 is F5-09 (Max. FMP output frequency). The base value of A7-04 is 10 V (voltage output) or 20 mA (current output).
4. Set running command

When $\mathrm{FO}-02=2$ (the command source is communication) and $\mathrm{A} 7-00=1$ (the user programmable card is enabled), drive running is controlled by setting of A7-08.

You can implement control of the AC drive via PLC program by operating corresponding D component.

Function Code	Parameter Name	Setting Range	Default
A7-08	Setting running command via the user programmable card	0 to 7	0: No command
		1: Forward run	0
		2: Reverse run	
		3: Forward jog	
		4:Reverse jog	
		5: Coast to stop	
		6: Decelerate to stop	7: Fault reset

5. Set frequency reference

When frequency reference setting channel is communication and A7-00 = 1 (user programmable card is enabled), frequency reference of the AC drive is determined by setting of A7-06.

You can implement control of frequency reference of AC drive via PLC program by operating corresponding D component.

Function Code	Parameter Name	Setting Range	Default
A7-06	Setting frequency reference via the user programmable card	-100.00% to 100.00%	0.00%

The base value of this parameter is $\mathrm{FO}-10$ (Max. frequency).
6. Set torque reference.

When torque reference setting channel is communication and A7-00 = 1 (user programmable card is enabled), torque reference of the AC drive is determined by setting of A7-07.
You can implement control of torque reference of AC drive via PLC program by operating corresponding D component.

Function Code	Parameter Name	Setting Range	Default
A7-07	Setting torque reference via the user programmable card	-200.0% to 200.00%	0.0%

The base value of this parameter is rated motor torque.
7. Set user-defined faults.

When A7-00 = 1 (user programmable card is enabled), you can set user defined faults Err80 to Err89 by operating corresponding D component to change setting of A7-09 in the range of 80 to 89 .

Function Code	Parameter Name	Setting Range	Default
A7-09	Setting torque reference via the user programmable card	0: No fault 80 to 89: User defined fault code	0

[^0]
6.8.6 Master and Slave Control

The master and slave control is designed for multi-drive application, where system is driven by multiple AC drives and motor shafts are coupled by gear, chain or conveyor belt.

The load is averagely allocated to AC drives in master and slave control. The external control signal need be connected to the master only, and the master controls the slaves via communication.
The master must be in speed control and the slaves follow the torque or speed reference of the master.

- When motor shafts are connected rigidly by chain or gear, the slaves must work in torque control to remove speed difference amongst drives.
- When motor shafts are connected flexibly, the slaves must work in speed control because slight speed difference amongst AC drives is allowed.

When master and slaves are in speed control, droop rate must be used.
Figure 6-55 Rigid/Flexible connection of the master and slave

Rigid connection of the master and slave

- The master is in speed control.
- The slave follows the torque reference of the master.

Flexible connection of the master and slave The master is in speed control. The slave follows the speed reference of the master.

To avoid control conflict, please:

- Connect all the external control signals to the master only.
- Do not use the operating panel or the field bus to control the slave .

Installation
Figure 6-56 Connection of the master and slaves

Note

You can use a relay for slave fault feedback or set tens position of A8-02 to 1 to send the salve fault information to the master via communication. Then when the slave stops due to occurrence of a fault, the master stops running.

Parameter Setting

- Rigid connection

For master in speed control, perform the following settings. Note that only setting of F2-10 can be modified.

Function Code	Parameter Name	Setting Range	Setting
Fd-00	Baud rate	0000 to 6039	Keep the same setting of thousands position of this parameter for the master and slave.
A8-00	Point-point communication	0: Disabled 1: Enabled	1
A8-01	Master or slave selection	0: Master $1:$ Slave	0
F0-10	Max. frequency	5.00 to 500.00 Hz	50.00 Hz Keep the same setting of this parameter for the master and slave.
F2-10	Digital setting of torque upper limit in speed control mode	0.0% to 200.0%	130.0%

For slave in torque control, perform the following settings. Note that only setting of F210 can be modified, and setting of A0-03 must be consistent with that of F2-10 for the master.

Function Code	Parameter Name	Setting Range	Setting
Fd-00	Baud rate	0000 to 6039	Keep the same setting of thousands position of this parameter for the master and slave.
A8-00	Point-point communication	0 : Disabled 1: Enabled	1
A8-01	Master and slave selection	0: Master 1: Slave	1
A8-02	Selection of action of the slave in pointpoint communication	$\begin{aligned} & 000 \text { to } 111 \\ & \text { 0: No } \\ & \text { 1: Yes } \end{aligned}$	
		Units position: whether to follow master's command	1
		Tens position: whether to send fault information to master when a fault occurs	1
		Hundreds position: whether to alarm when it becomes off-line	-
A8-03	The slave received data	0 : Output frequency 1: Frequency reference	0
A8-11	Window width	0.20 to 10.00 Hz	0.5 Hz
F0-10	Max. frequency	5.00 to 500.00 Hz	$50.00 \mathrm{~Hz}$ Keep the same setting of this parameter for the master and slave.
F8-07	Acceleration time 4	0.0s to 6500.0s	0.0s
F8-08	Deceleration time 4	0.0s to 6500.0s	0.0s
F0-02	Command source selection	0: Operating panel (keypad \& display) 1: Terminal I/O control 2: Serial comms.	2
A0-00	Speed/Torque control selection	0: Speed control 1: Torque control	1

Function Code	Parameter Name	Setting Range	Setting
A0-01	Torque reference source in torque control	0: Set by A0-03 1: Al1 2: AI2 3: Al3 4: Pulse reference (DI5) 5: Serial comms. 6: MIN (Al1, Al2) 7: MAX (AI1, AI2)	0
A0-03	Torque digital setting in torque control	-200.0\% to 200.0\%	130.0\%
A0-07	Acceleration time in torque control	0.00s to 65000s	0.00s
A0-08	Deceleration time in torque control	0.00s to 65000s	0.00s

Note	- Do not set start frequency in torque control. Otherwise, larger rush-in current results at start. - Reduce setting of A8-11 of the slave in master and slave control but the setting must be larger than 0.20 Hz . Meanwhile, if deceleration time is very short, increase setting of A8-11 properly. The larger the setting of A8-11 is, the weaker window effect will be obtained.

Set initial value to half of rated motor slip. You can obtain rated motor slip according to the following formulas:

Number of pole pairs of motor (take an integer) $=(60 \times$ rated motor frequency $) /$ rated motor speed

Synchronous motor speed $=(60 \mathrm{x}$ rated motor frequency)/number of pole pairs of motor

Rated motor slip = (synchronous motor speed - rated motor speed)/synchronous motor speed x rated motor frequency

- Flexible connection

For the master in speed control, perform the following settings. Note that only the setting of $\mathrm{F} 8-15$ can be modified.

Function Code	Parameter Name	Setting Range	Setting
Fd-00	Baud rate	0000 to 6039	Keep thousands position of this parameter to the same value for the master and slave.
A8-00	Selection of point-point communication	0: Disabled 1: Enabled	1
A8-01	Master and slave selection	0: Master 1: Slave	0
F0-10	Max. frequency	5.00 to 500.00 Hz	50.00 Hz Keep the same setting of this parameter for the master and slave.
F8-15	Droop rate	0.00 to 10.00 Hz	1.00 Hz
F0-17	Acceleration time 1	0.0 to 6500.0 s	Keep the same setting of this parameter for the master and slave.
F0-18	Deceleration time 1	0.0 to 6500.0 s	Keep the same setting of this parameter for the master and slave.

For slave in speed control, perform the following settings. Note that only setting of F815 can be modified.

Function Code	Parameter Name	Setting Range	Setting
Fd-00	Baud rate	0000 to 6039	Keep thousands position of this parameter to the same value for the master and slave.
A8-00	Selection of point-point communication	0: Disabled 1: Enabled	1
A8-01	Master and slave selection	0: Master 1: Slave	1

Function Code	Parameter Name	Setting Range	Setting
A8-02	Selection of action of the slave in point-point communication	000 to 111	
		0 : No	
		1:Yes	
		Units position: whether to follow masters command	1
		Tens position: whether to send fault information to master when a fault occurs	1
		Hundreds position: whether to alarm when it becomes offline	-
A8-03	The slave received data	0: Output frequency 1: Frequency reference	0
F0-02	Command source selection	0 : Operating panel control (keypad \& display) 1: Terminal I/O control 2: Serial comms.	2
F0-03	Main frequency reference setting channel selection	0 : Digital setting (nonretentive at power down) 1: Digital setting (retentive at power down) 2: Al1 3: Al2 4: Al3 5: Pulse reference 6: Multi-reference 7: Simple PLC 8: PID reference 9: Serial comms.	9
F0-10	Max. frequency	5.00 to 500.00 Hz	50.00 Hz Keep the same setting of this parameter for the master and slave.
F0-17	Acceleration time 1	0.0 to 6500.0s	Keep the same setting of this parameter for the master and slave.
F0-18	Deceleration time 1	0.0 to 6500.0s	Keep the same setting of this parameter for the master and slave
F8-15	Droop rate	0.00 to 10.00 Hz	1.00 Hz
A0-00	Speed/Torque control selection	0 : Speed control 1: Torque control	0

Droop Control

The droop control function aims at balancing the load level of two motors that drive the same load. This function is required only when both master and slave are in speed control

A proper droop rate is gradually obtained during drive running. Therefore, do not set F815 to a very large value. Otherwise, steady speed will decline obviously when load is very large. You must set this parameter in both master and slave.

Figure 6-57 Relationship between droop rate and output torque

- Droop speed = rated motor frequency x output torque x droop rate
- Actual AC drive frequency $=$ frequency reference - droop speed

Suppose that F8-15 is set to 10%, rated motor frequency is 50 Hz , and output torque is 50%. Actual drive frequency $=50 \mathrm{~Hz}-50 \times 50 \% \times(1.00 / 10)=47.5 \mathrm{~Hz}$.

Function Code	Parameter Name	Setting Range	Default
A8-00	Point-point communication	$0:$ Disabled $1:$ Enabled	0

This function parameter determines whether to enable point-point communication.
The point-point communication indicates direct communication between two or more drives via CANlink. The master sends frequency or torque reference to slaves based on frequency or torque signal it receives.

When connecting multiple AC drives via CANlink card, install a terminal resistor to the CANlink card of the end drive.

Once this function is enabled, CANlink communication addresses of the master and slaves are matched automatically. The baud rate is set in Fd-00.

Function Code	Parameter Name	Setting Range	Default
A8-01	Master or slave selection	0: Master 1: Slave	0

This function parameter determines whether the AC drive is master or slave.

Function Code	Parameter Name	Setting Range	Default
A8-02	Selection of action of the slave in point-point communication	0: No 1: Yes	011
	Units position: whether to follow master's command		
	Tens position: whether to send fault information to master when a fault occurs		
	Hundreds position digit: whether to alarm when it becomes offline		

When AC drive is the slave $(\mathrm{A} 8-01=1)$ in serial comms. control $(\mathrm{F} 0-02=2)$, this function determines whether it follows the master to run/stop, whether it sends fault information to the master when a fault occurs, and whether it alarms when it becomes offline.

Function Code	Parameter Name	Setting Range	Default
A8-03	The slave received data	0: Output frequency 1: Frequency reference	0

- A8-03 = 0: If F8-15 $\neq 0$, the master sends its frequency after droop control to the slave. It is applicable to droop control or speed synchronization control (slave in speed control). In load sharing control (slave in torque control), the master sends its output frequency to the slave. In this case, ensure F8-15 =0.
- $\mathrm{A} 8-03=1$: The master sends its frequency reference to the slave.

Function Code	Parameter Name	Setting Range	Default
A8-04	Zero offset of received data	-100.00 to 100.00	0.00
A8-05	Gain of received data	-10.00 to 10.00	1.00

These two function parameters correct received data. When A0-00 = 0, they correct frequency reference. When $\mathrm{A} 0-00=0$, they correct torque reference.

Function Code	Parameter Name	Setting Range	Default
A8-06	Point-point communication interruption detection time	0.0s to 10.0s	1.0 s

This function parameter sets time required to detect communication interruption of the master or slave. To disable the detection function, set this parameter to 0.

Function Code	Parameter Name	Setting Range	Default
A8-07	Master data sending cycle in point-point communication	0.001 s to 10.000 s	0.001 s

This function parameter sets data sending cycle of the master in point-point communication.

Function Code	Parameter Name	Setting Range	Default
A8-11	Window width	0.20 to 10.00 Hz	0.5 Hz

This function parameter is effective only for the master and slave control mode. Modify the setting to ensure synchronization of the master and slave speed within window width.

6.9 Control Circuit Terminals

This section describes functions of DI, DO, virtual DI, virtual DO, AI and AO terminals.

6.9.1 Function of DI Terminals

Function Code	Parameter Name	Setting Range	Default
F4-00	DI1 function selection	0 to 59	1
F4-01	DI2 function selection	0 to 59	4
F4-02	DI3 function selection	0 to 59	9
F4-03	DI4 function selection	0 to 59	12
F4-04	DI5 function selection	0 to 59	13
F4-05	DI6 function selection	0 to 59	0
F4-06	DI7 function selection	0 to 59	0
F4-07	DI8 function selection	0 to 59	0
F4-08	DI9 function selection	0 to 59	0
F4-09	DI10 function selection	0 to 59	0

These function parameters allocate ten digital terminals with functions. There are five digital terminals on the control board, DI1 to DI5. There are five additional digital terminals on the optional I/O extension board, DI6 to DI10.

The functions of digital input terminals are described in the following figure.

Value	Function	Description
0	No function	Set reserved terminals to 0 to avoid malfunction.
1	Forward run (FWD)	The DI terminals selecting these two functions control forward and reverse running of the AC drive.
2	Reverser run (REV)	Three-wire control
3	The DI terminal set for this function determines three-wire control mode of the AC drive.	
4	Forward jog (FJOG)	FJOG indicates forward jog running, and RJOG indicates reverse jog running. Jog frequency, jog acceleration time and jog deceleration time are described respectively in F8-00, F8-01 and F8-02.
5	Reverse jog (RJOG)	Terminal UP
7	The terminals selecting these two functions are used for increment and decrement when frequency reference is input via external DI terminal, or when frequency source is digital setting.	
8	Coast to stop	When terminal set for this function becomes on, the drive shuts off output and the stop process of motor is not controlled by the drive. It means the same as coast to stop described in F6-10.
9	Fault reset (RESET)	You can perform fault reset via DI terminal set for this function. It is the same as function of the RESET key on the operation panel. Remote fault reset is implemented by this function.
10	RUN disabled	When the terminal set for this function becomes on, the AC drive decelerates to stop and retains all running parameters, such as PLC, wobble and PID parameters. Once the terminal becomes off, the AC drive resumes the running status before stop.
11	External fault NO input	When terminal set for this function becomes on, the drive detects ERR15 and performs fault protection. For details, see F9-47.

Value	Function	Description
12	Multi-reference terminal 1	16 speeds or 16 other references can be implemented through combinations of 16 states of these four terminals.
13	Multi-reference terminal 2	
14	Multi-reference terminal 3	
15	Multi-reference terminal 4	
16	Terminal 1 for acceleration/deceleration time selection	Totally four groups of acceleration/deceleration time can be selected through combinations of four states of these two terminals.
17	Terminal 2 for acceleration/deceleration time selection	
18	Frequency reference setting channel switchover	The terminal set for this function is used to perform switchover between two frequency reference setting channels according to setting in F0-07.
19	UP and DOWN setting clear (terminal, operation panel)	If the frequency source is digital setting, the terminal set for this function is used to clear the modification by using the UP/DOWN function or the increment/decrement key on the operation panel, restoring the frequency reference to the value of F0-08.
20	Command source switchover 1	If command source is terminal control ($\mathrm{FO} 0-02=1$), this terminal is used to perform switchover between terminal control and operation panel control. If command source is communication control (FO-02 = 2), this terminal is used to perform switchover between communication control and operation panel control.
21	Acceleration/Deceleration prohibited	This function ensures the AC drive to maintain current frequency output without being affected by external signals (except STOP command).
22	PID disabled	This function disables the PID function. The AC drive maintains current frequency output without supporting PID adjustment of frequency reference.
23	PLC state reset	When the simple PLC function is enabled again after it was disabled in execution process, this function restores original state of simple PLC for the AC drive
24	Wobble disabled	When terminal set for this function becomes on, the wobble function becomes disabled and the drive outputs center frequency.
25	Counter input	Terminal set for this function is used to count pulses.
26	Counter reset	Terminal set for this function is used to clear counter.
27	Length signal pulses count	Terminal set for this function is used to count pulses of the length signal.
28	Length reset	The terminal set for this function is used to clear length.
29	Torque control prohibited	When the terminal set for this function becomes on, torque control is disabled and the AC drive enters speed control.
30	Pulse input as frequency reference (valid only for DI5)	DI5 is used for pulse input as frequency reference.
31	Reserved	-
32	Immediate DC injection braking	Once the terminal set for this function becomes on, the AC drive directly switches over to $D C$ injection braking state.

Value	Function	Description
33	External fault NC input	Once terminal set for this function becomes on, the AC drive detects ERR15 and stops.
34	Frequency modification enabled	When terminal set for this function becomes on, the AC drive responds to frequency modification.
35	PID operation direction reverse	When terminal set for this function becomes on, PID operation direction is reversed to direction set in FA-03.
36	External stop 1	In operation panel control, the terminal set for this function can be used to stop the AC drive, equivalent to function of the STOP key on the operation panel.
37	Command source switchover 2	Terminal set for this function is used to perform switchover between terminal control and communication control. If command source is terminal control, the AC drive switches over to communication control after the terminal becomes ON.
38	PID integral disabled	When terminal set for this function becomes on, the integral function becomes disabled. However, the proportional and differentiation functions are still effective.
39	Switchover between main frequency reference and preset frequency	When terminal set for this function becomes on, the frequency reference is replaced by preset frequency set in F0-08.
40	Switchover between auxiliary frequency reference and preset frequency	When terminal set for this function becomes on, frequency reference is replaced by preset frequency set in F0-08.
41	Motor selection	Switchover between motor 1 and motor 2 can be implemented through two state combinations of terminal set for this function.
42	Reserved	-
43	PID parameter switchover	If PID parameters switchover is done via DI terminal (FA-18 = 1), PID parameters are FA-05 to FA-07 when terminal set for this function becomes off; PID parameters are FA-15 to FA-17 when terminal set for this function becomes on.
44	User-defined fault 1	If terminals selecting these two function
45	User-defined fault 2	drive detects Err27 and Err28 respectively, and performs fault protection based on setting of F9-49.
46	Speed control/ Torque control	This function enables the AC drive to switch over between speed control and torque control. When terminal set for this function becomes off, the AC drive runs in the mode set in A0-00. When terminal set for this function becomes on, the AC drive switches over to the other control mode.
47	Emergency stop (ES)	When the ES terminal becomes on, the AC drive decelerates based on the setting of F8-55 (deceleration time for emergency stop). If F8-55 $=0$ in V/F control, the AC drive decelerates based on the setting of F0-19 (Acceleration/Deceleration time unit). The AC drive will not operate when the ES terminal is ON even if the terminal receiving RUN command is ON. In this case, to make the AC drive operate again, turn off the terminal receiving RUN command and then turn it on.
48	External stop 2	This function enables the AC drive to decelerate to stop in any control mode (operation panel, terminal or communication). In this case, the deceleration time is deceleration time 4.

Value	Function	Description
49	Deceleration DC injection braking	When terminal set for this function becomes on, the AC drive decelerates to DC injection braking 2 frequency threshold and then switches over to DC injection braking state.
50	Clear running time this time	When terminal set for this function becomes on, current running time of the AC drive is cleared. This function must be supported by F8-42 and F8-53.
51	Two-wire control/ Three-wire control	This function enables the AC drive to switch over between two- wire control and three-wire control. If F4-11 is set to two-wire control mode 1, the AC drive switches over to three-wire control mode 1 when terminal set for this function becomes on.
52	Reverse running prohibited	When terminal set for this function becomes on, reverse running of the AC drive is prohibited. It is the same as function of F8-13.
53 to 59	Reserved	$-\quad$

Function Code	Parameter Name	Setting Range	Default
F4-35	DI1 delay	0.0s to 3600.0 s	0.0 s
F4-36	DI2 delay	0.0 s to 3600.0 s	0.0 s
F4-37	DI3 delay	0.0 s to 3600.0 s	0.0 s

When state of DI terminals changes, these three function parameters set delay time of the change. Now the drive supports delay function on DI1, DI2 and DI3 only.

Function Code	Parameter Name	Setting Range	Default
F4-38	DI active mode selection 1	0: High level active	00000
		1: Low level active	
		Units position: DI1 active mode	
		Tens position: DI2 active mode	
		Hundreds position: DI3 active mode	
		Thousand position: DI4 active mode	
		Ten thousands position: DI5 active mode	
F4-39	DI active mode selection 2	0: High level active	00000
		1: Low level active	
		Units position: DI6 active mode	
		Tens position: DI7 active mode	
		Hundreds position: DI8 active mode	
		Thousands position: DI9 active mode	
		Ten thousands position: DI10 active mode	

These two function parameters set active mode of DI terminals.

- 0: High level active

If a high level voltage is applied to DI terminal, the DI signal will be seen as active. That is, the DI terminal becomes active when being connected with COM, and inactive when being disconnected from COM.

- 1: Low level active

If a low level voltage is applied to DI terminal, the DI signal will be seen as active. That is, the DI terminal becomes active when being disconnected from COM, and inactive when being connected with COM.

6.9.2 Function of DO Terminals

The drive provides a digital output (DO) terminal, an analog output (AO) terminal, a relay terminal and an FM terminal (either high-speed pulse output or open-collector output).

Extra AO terminal (AO2), relay terminal (relay2) and DO terminal (DO2) are provided by the I/O extension card.

Function Code	Parameter Name	Setting Range	Default
F5-00	FM terminal output mode	0: Pulse output (FMP)	0
		1: Digital output (FMR)	

This function parameter is a programmable multiplexing terminal and determines whether FM terminal is high-speed pulse output (FMP) or open-collector output (FMR). When used for highspeed pulse output, max. output frequency is 100 kHz . For details, see the description of F5-06.

Function Code	Parameter Name	Setting Range	Default
F5-01	FMR function selection	0 to 41	0
F5-02	Relay (T/A-T/B-T/C) function selection	0 to 41	2
F5-03	Extension card relay (P/A-P/B-P/C) function selection	0 to 41	0
F5-04	DO1 function selection	0 to 41	1
F5-05	Extension card DO2 function selection	0 to 41	4

These five function parameters select the function of the five digital output terminals. T/A-T/B-T/ C is the relay of the drive and P/A-P/B-P/C is the relay on the I/O extension card.

The functions of the digital output terminals are described in the following figure.

Value	Function	Description
0	No output	Terminal has no function.
1	AC drive running	When the AC drive is running and has output frequency (can be zero), terminal set for this function becomes on.
2	Fault output	When a fault occurs and the AC drive stops due to the fault, terminal set for this function becomes on.
3	Frequency level detection 1 output	Refer to descriptions of F8-19 and F8-20.
4	Frequency reached	Refer to descriptions of F8-21.
5	Zero-speed running (no output at stop)	When output frequency is 0 during drive running, terminal set for this function becomes on. When the drive stops, terminal becomes off.
6	Motor overload pending	The AC drive judges motor overload pre-warning according to pre- warning threshold before performing overload protection. If this threshold is exceeded, terminal set for this function becomes on. For motor overload parameters, see descriptions of F9-00 to F9-02.
7	AC drive overload pending	Terminal set for this function becomes on 10s before the AC drive performs overload protection.
8	Set count value reached	Terminal set for this function becomes on when count value reaches the value set in Fb-08.
9	Designated count value reached	Terminal set for this function becomes on when count value reaches value set in Fb-09.

Value	Function	Description
10	Length reached	Terminal set for this function becomes on when detected actual length exceeds value set in $\mathrm{Fb}-05$.
11	PLC cycle completed	Terminal set for this function outputs a pulse signal with width of 250 ms when simple PLC completes one cycle.
12	Accumulative running time reached	Terminal set for this function becomes on when accumulative running time of the AC drive exceeds value set in F8-17.
13	Frequency limited	Terminal set for this function becomes on when frequency reference exceeds frequency upper or lower limit, and output frequency of the AC drive also reaches the upper or lower limit.
14	Torque limited	Terminal set for this function becomes on when the AC drive enters stall protection because output torque reaches toque limit in speed control.
15	Ready for RUN	Terminal set for this function becomes on when the AC drive is ready to drive motor (Power applied to main circuit and control circuit is normal, and no fault is detected).
16	Al1 > Al2	When Al1 input is greater than Al2 input, terminal set for this function becomes on.
17	Frequency upper limit reached	When running frequency reaches frequency upper limit, terminal set for this function becomes on.
18	Frequency lower limit reached (no output at stop)	When running frequency reaches frequency lower limit, terminal set for this function becomes on. When the AC drive is in stop status, terminal set for this function becomes off.
19	Undervoltage	Terminal set for this function becomes on when undervoltage occurs on $A C$ drive.
20	Communication setting	Whether terminal is active or inactive is determined by communication address 0x2001.
21	Reserved	
22	Reserved	
23	Zero-speed running 2 (having output at stop)	When output frequency is 0 during drive running, terminal set for this function becomes on. When the drive stops, terminal remains on.
24	Accumulative power-on time reached	Terminal set for this function becomes on when accumulative poweron time of the AC drive (F7-13) exceeds value set in F8-16.
25	Frequency level detection 2	Refer to descriptions of F8-28 and F8-29.
26	Frequency 1 reached	Refer to descriptions of F8-30 and F8-31.
27	Frequency 2 reached	Refer to descriptions of F8-32 and F8-33.
28	Current 1 reached	Refer to descriptions of F8-38 and F8-39.
29	Current 2 reached	Refer to descriptions of $\mathrm{F} 8-40$ and $\mathrm{F8}-41$.
30	Timing reached	On the condition that the timing function is enabled ($\mathrm{F} 8-42=1$), terminal set for this function becomes on when current running time of the AC drive reaches the set time.
31	Al1 input exceeding limit	Terminal set for this function becomes on when Al1 input is larger than value set in F8-46 (Al1 input voltage upper limit) or smaller than value set in F8-45 (Al1 input voltage lower limit).
32	Load lost	Terminal set for this function becomes on when load gets lost.

Value	Function	Description
33	Reverse running	Terminal set for this function becomes on when the AC drive runs in reverse direction.
34	Zero current	Refer to descriptions of F8-34 and F8-35.
35	IGBT temperature reached	Terminal set for this function becomes on when heatsink temperature of AC Drive IGBT (F7-07) reaches IGBT temperature threshold (F8-47).
36	Output current exceeding limit	Refer to descriptions of F8-36 and F8-37.
37	Frequency lower limit reached (having output at stop)	The terminal set for this function becomes on when the running frequency reaches the frequency lower limit. When the drive stops, the terminal remains on.
38	Alarm output	If a fault occurs on the AC drive and the AC drive continues to run, terminal set for this function outputs an alarm signal.
39	Motor overheat pending	Terminal set for this function becomes on when motor temperature reaches value set in F9-58 (Motor overheat pending threshold). You can view motor temperature by using U0-34.
40	Current running time reached	Terminal set for this function becomes on when current running time of the AC drive exceeds value set in F8-53.
41	Fault output	When a fault occurs on the AC drive (except undervoltage), terminal set for this function becomes on.

Function Code	Parameter Name	Setting Range	Default
F5-17	FMR output delay	0.0 s to 3600.0 s	0.0 s
F5-18	Relay 1 output delay	0.0 s to 3600.0 s	0.0 s
F5-19	Relay 2 output delay	0.0 s to 3600.0 s	0.0 s
F5-20	DO1 output delay	0.0 s to 3600.0 s	0.0 s
F5-21	DO2 output delay	0.0s to 3600.0 s	0.0 s

These parameters set output delay of terminals FMR, relay1, relay2, DO1 and DO2 from state change.

Function Code	Parameter Name	Setting Range	Default
F5-22	Dl active mode selection 1	0: Positive logic active	00000
		1: Negative logic active	
		Units position: FMR active mode	
		Tens position: Relay1 active mode	
		Hundreds position: Relay2 active mode	
		Thousands position: DO1 active mode	
		Ten thousands position: DO2 active mode	

This function parameter sets active mode of terminals FMR, relay1, relay2, DO1 and DO2.

- 0: Positive logic active

Digital output terminal becomes active when being connected with COM, and inactive when being disconnected from COM.

- 1: Negative logic active

Digital output terminal becomes active when being disconnected from COM, and inactive when being connected with COM.

6.9.3 Function of VDI Terminals

VDI terminals have the same functions as DI terminals do. They can be used for multi-functional digital inputs.

Function Code	Parameter Name	Setting Range	Default
A1-00	VDI1 function selection	0 to 59	0
A1-01	VDI2 function selection	0 to 59	0
A1-02	VDI3 function selection	0 to 59	0
A1-03	VDI4 function selection	0 to 59	0
A1-04	VDI5 function selection	0 to 59	0

These function parameters set function to the five virtual DI terminals VDI1 to VD15, which have the same digital input functions (0 to 59) as ten DI terminals do. For more details, see description of F4-00" to F4-09.

Function Code	Parameter Name	Setting Range	Default
A1-05	VDI active state setting mode	0: Decided by state of VDOx	00000
		1: Decided by A1-06	
		Units position: VDI1	
		Tens position: VDI2	
		Hundreds position: VDI3	
		Thousands position: VDI4	
		Ten thousands position: VDI5	
A1-06	Selection of VDI active state	0: Inactive	00000
		1: Active	
		Units position: VDI1	
		Tens position: VDI2	
		Hundreds position: VDI3	
		Thousands position: VDI4	
		Ten thousands position: VDI5	

These function parameters determine active mode of VDI1 to VD15.

- 0: Decided by state of VDOx

To enable the AC drive to detect a fault and stop when input from Al1 input reaches limit, perform the following settings:

- Set A1-00 to 44 to set VDI1 for function 44 "User-defined fault 1".
- Set A1-05 to xxx0 to determine VDI1 active state by state of VDOx.
- Set A1-11 to 31 to set VDO1 for function 31 "Al1 input exceeding limit".

When input from Al1 reaches limit, VDO1 becomes on. Then, VDI1 becomes on and the AC drive receives user-defined fault.

- 1: Decided by A1-06

To enable the AC drive to automatically enter running status after power-on, perform the following settings:

- Set A1-00 to 1 to set VDI1 for function 1 "Forward RUN (FWD)".
- Set A1-05 to xxx1 to determine VDI1 active state by state of A1-06.
- Set F0-02 to 1 to use terminal control as command source.
- Set F8-18 to 0 to disable start protection.

After completing initialization at power-on, the AC drive detects that VDI1 set for function FWD is active. This means the AC drive receives forward run command from VDI1 and starts forward running.

6.9.4 Function of VDO Terminals

VDO terminals have the same digital output functions (1 to 41) as DO terminals do. The VDO can be used together with VDIx to implement some simple logic control.

Function Code	Parameter Name	Setting Range	Default
A1-11	VDO1 function selection	0 : Short with physical DIx internally 1 to 40	0
A1-12	VDO2 function selection	0 : Short with physical DIx internally 1 to 40	0
A1-13	VDO3 function selection	0 : Short with physical DIx internally 1 to 40	0
A1-14	VDO4 function selection	0 : Short with physical DIx internally 1 to 40	0
A1-15	VDO5 function selection	0 : Short with physical DIx internally 1 to 40	0
A1-16	VDO1 output delay	0.0s to 3600.0s	0.0s
A1-17	VDO2 output delay	0.0s to 3600.0s	0.0s
A1-18	VDO3 output delay	0.0 s to 3600.0 s	0.0s
A1-19	VDO4 output delay	0.0s to 3600.0s	0.0s
A1-20	VDO5 output delay	0.0 s to 3600.0s	0.0s
A1-21	VDO active mode selection	0 : Positive logic active 1: Negative logic active	00000
		Units position: VDO1	
		Tens position: VDO2	
		Hundreds position: VDO3	
		Thousands position: VDO4	
		Ten thousands position: VDO5	

6.9.5 Function of the AI Terminals

The drive provides two AI terminals (AI1, AI2). An extra AI terminal (AI3) is provided by I/O extension card.

Here use Al terminals as DI . When Al input voltage is higher than $7 \mathrm{~V}, \mathrm{AI}$ is in high level state. When Al input voltage is lower than $3 \mathrm{~V}, \mathrm{Al}$ is in low level state. Al is in hysteresis state between 3 V and 7 V .

Figure 6-58 Relationship between AI input voltage and DI state

Function Code	Parameter Name	Setting Range	Default
A1-07	Function selection for Al1 used as DI	0 to 59	0
A1-08	Function selection for AI2 used as DI	0 to 59	0
A1-09	Function selection for Al3 used as DI	0 to 59	0
A1-10	Active state selection for AI used as DI	0: High level active $1:$ Low level active	000
		Units position: AI1	
		Tens position: AI2	Hundreds position: AI3

6.9.6 Function of the AO and Pulse Output Terminals

The drive provides an AO terminal (AO1). An extra AO terminal (AO2) is provided by the I/O extension card (GT60IO1).

Function Code	Parameter Name	Setting Range	Default
F5-00	FM terminal output mode	0: Pulse output (FMP) 1: Digital output (FMR)	0
F5-06	FMP function selection	0 to 16	0
F5-07	AO1 function selection	0 to 16	0
F5-08	AO2 function selection	0 to 16	1

These parameters select the function of the pulse output terminal and the two analog output terminals.

The pulse output frequency range of the FMP terminal is 0.01 kHz to F5-09 (Max. FMP output frequency). F5-09 must be set in the range of 0.01 to 100.00 kHz .

The output range of AO 1 and AO 2 is 0 to 10 V or 0 to 20 mA .
The functions of the three terminals are listed in the following table.

Value	Output Function	Range (Corresponding to 0.0% to 100.0% of Pulse or Analog Output Range)
0	Running frequency	0 to max. frequency
1	Frequency reference	0 to max. frequency
2	Output current	0 to 2 times of rated motor current
3	Output torque (absolute value)	0 to 2 times of rated motor torque
4	Output power	0 to 2 times of rated power
5	Output voltage	0 to 1.2 times of rated AC drive voltage
6	Pulse input	0.01 to 100.00 kHz
7	Al1	0 to 10 V
8	Al2	0 to 10 V (or 0 to 20 mA)
9	Al3	0 to 10 V
10	Length	0 to max. set length
11	Counting value	0 to max. count value
12	Communication reference	0.0% to 100.0%
13	Motor speed	0 to motor speed corresponding to max. output frequency
14	Output current	0.0 to 1000.0 A
15	Output voltage	0.0 to 1000.0 V
16	Output torque of the motor (actual value, a percentage of the rated motor torque)	-2 times of rated motor torque to 2 times of rated motor torque
17	Output torque of the AC drive (actual value, a percentage of the rated AC drive torque $)$	-

Function Code	Parameter Name	Setting Range	Default
F5-09	Max. FMP output frequency	0.01 to 100.00 kHz	50.00 kHz

This function parameter sets maximum pulse output frequency when FM terminal is used for pulse output.

Function Code	Parameter Name	Setting Range	Default
F5-10	AO1 zero offset coefficient	-100.0% to 100.0%	0.0%
F5-11	AO1 gain	-10.00 to 10.00	1.00
F5-12	AO2 zero offset coefficient	-100.0% to 100.0%	0.00%
F5-13	AO2 gain	-10.00 to 10.00	1.00

These four function parameters generally correct zero offset of analog output and output amplitude error. They can also define required AO curve.

Zero offset coefficient 100% of AO 1 and AO 2 corresponds to 10 V or 20 mA . You can calculate the gain and the zero offset coefficient from the following formulas:

$$
\begin{aligned}
& \mathrm{K}\left(\mathrm{Y}_{1}-\mathrm{Y} 2\right) \times \mathrm{Xmax} \\
& =\frac{(X 1-X 2) \times Y \max }{}
\end{aligned} \quad \mathrm{~b}=\frac{(\mathrm{X} 1 \times \mathrm{Y} 2-\mathrm{X} 2 \times \mathrm{Y} 1)}{(\mathrm{X} 1-\mathrm{X} 2) \times Y \max }
$$

In the formulas:

- "b" represents zero offset.
- "k" represents gain.
- "X" represents output frequency.
- "Y" represents actual output of the AO.
- " Xmax " represents max. output frequency (determined by F0-10).
- "Ymax" represents max. output 10 V or 20 mA .

For example, AO is used for output of frequency reference. To implement output of $8 \mathrm{~V}(\mathrm{Y} 1)$ at 0 $\mathrm{Hz}(\mathrm{x} 1)$ and output of $4 \mathrm{~V}(\mathrm{Y} 2)$ at $40 \mathrm{~Hz}(\mathrm{X} 2)$ according to the formulas, you can obtain gain and zero offset coefficient as follows:

$$
K=\frac{(8-4) \times 50}{(0-40) \times 10}=-0.5 \quad b=\frac{(0 \times 4-40 \times 8)}{(0-40) \times 10}=80 \%
$$

Then you can set F5-11 to -0.5 and set F5-10 to 80\%.
AO output signal type and corresponding max. value are as follows:

AO1 output signal	Corresponding Max. Output (Ymax)
Voltage	10 V
Current	20 mA

6.10 Communication

The drive support communication links, such as Modbus, PROFIBUS-DP, CANlink (always valid), or CANopen.

You can monitor and control of the AC drive, for example, view or modify function parameters by using a host computer.

Make sure to set communication parameters correctly. Otherwise, communication may fail.

Function Code	Parameter Name	Setting Range	Default
F0-28	Serial port communication protocol	0: Modbus protocol $1:$ PROFIBUS-DP or CANopen protocol	0
Fd-00	Baud rate	0000 to 6039	5005
Fd-01	Modbus data format symbol	0 to 3	0
Fd-02	Local address	$0:$ Broadcast address 1 to 247	1
Fd-03	Modbus response delay	0 to 20	0.0
Fd-04	Serial port communication timeout	0.0 (Invalid) 0.1 to 60.0	30
Fd-05	Modbus protocol selection and PROFIBUS-DP data frame	00 to 31	0
Fd-06	Current resolution read by communication	0 to 1	0
Fd-08	CANlink communication timeout time	0.0 (Invalid) 0.1 to 60.0	2

6.10.1 Read and Write Function Parameters

- Read Function Parameters

For function parameters in groups F0 to FF and AO to AF, the highest eight bits in communication address indicate function code group, while the lowest eight bits indicate hexadecimal number converted from SN in function code group.

For example, communication address of $\mathrm{FO}-16$ is F 010 H , in which FOH indicates function code group $\mathrm{F0}$ and 10 H is the hexadecimal number converted from 16.

Communication address of AC-08 is AC08H, in which ACH indicates function code group AC and 08 H is the hexadecimal number converted from 8.

To read desired function parameter, host computer needs to send a read command to the AC drive. Here takes the Modbus protocol as an example to describe communication process of reading the drive data.
For example, to read F0-10, read command is 0103 F0 0A 01 DE D7 (hexadecimal). In the command,

- 01 H (settable): AC drive address
- 03H: read command
- F00AH: communication address of F0-10
- 01 H : number of function parameters
- DED7H: CRC check

Master Command			Slave Response	
ADDR	01 H	ADDR	01 H	
CMD	03 H	CMD	03 H	
Parameter address high bits	F0H	Parameter address high bits	F0H	
Parameter address low bits	0 AH	Parameter address low bits	0 AH	
Number of function parameters	01 H	Number of function parameters	01 H	
CRC high bits	DEH	CRC high bits	DEH	
CRC low bits	D7H	CRC low bits	D7H	
-	-	-	-	

Write Function Parameters

For function parameters in groups F0 to FF, the highest eight bits in communication address indicate 00 to $0 F$ or $F 0$ to FF according to whether to write parameter to EEPROM, while the lowest eight bits indicate the hexadecimal number converted from SN in function code group.

For example, host computer writes data to F0-16. If not writing to EEPROM, communication address is 0010 H . If writing to EEPROM, communication address is F010H.

For function parameters in groups A0 to AF, the highest eight bits in communication address indicate 40 to 4 F or A0 to AF according to whether to write parameter to EEPROM, while the lowest eight bits indicate the hexadecimal number converted from SN in function code group.
For example, host computer writes data to AC-08. If not writing to EEPROM, communication address is 4 C 08 H . If writing to EEPROM, communication address is $\mathrm{AC08H}$.

To write data, host computer needs to send a write command to the AC drive. Here takes Modbus protocol as an example to describe communication process of writing data to the $A C$ drive.

For example, to write 2 to AC-16 (not writing to EEPROM), write command is 01064C1000021F5E (hexadecimal). In the command,

- 01H (settable): AC drive address
- 06H: write command
- 4 C 10 H : communication address of $\mathrm{AC}-16$
- 02H: writing data
- 1F5EH: CRC check

Master Command			Slave Response
ADDR	01 H	ADDR	01 H
CMD	06 H	CMD	06 H
Parameter address high bits	4 CH	Parameter address high bits	4 CH
Parameter address low bits	10 H	Parameter address low bits	10 H
Writing data high bits	00 H	Number of function parameters	00 H
Writing data low bits	02 H	CRC high bits	02 H
CRC high bits	1 FH	CRC high bits	1 FH
CRC low bits	5 EH	CRC low bits	5 EH

6.10.2 Read and Write State Parameters

State parameters include monitoring parameters in group U ($U 0$ to $U F$), drive fault information and drive running status.

- The highest 8 bits in communication of parameters in U0 to UF is 70 to 7 F , while lowest eight bits indicate the hexadecimal number converted from SN in function code group. For example, communication address of $\mathrm{U} 0-11$ is 700 BH .
- Communication address of the drive fault information is 8000 H . You can obtain current fault codes by using host computer to read the address.
- Communication address of drive running status is 3000 H . Word in the read information is defined as 1: forward run, 2: reverse run, 3: stop.

Here takes CANopen protocol as an example to describe communication process of host computer to read drive running status.

First set F0-28 = 1 to select CANopen protocol. Suppose that DIP setting of Node-ID of the AC drive is 0×05 (modifiable, range: 1 to 63), and drive running status is 1 : forward run.

The format of message sent by the master is as follows:

Message ID (Hex)	RTR	Data (Hex)
0×605	0	4030000000000000

$0 \times 605=0 \times 600+0 \times 05$ (Node-ID DIP setting)
Format of response message returned by the slave is as follows:

Message ID (Hex)	RTR	Data (Hex)
0×585	0	4030000000000000

$0 \times 585=0 \times 580+0 \times 05$ (Node-ID DIP setting)
Sending message and response message are described as follows:

Sending Message			Response Message
Message ID	605 H	Message ID	605 H
RTR	40 H	Response to read command	RTR
Read command	30 H	Communication address high bits	30 H
Communication address high bits	00 H	Mapping address	00 H
Mapping address	00 H	Communication address low bits	00 H
Communication address low bits	00 H	Data low byte	01 H
Reserved	00 H	Data high byte	00 H
Reserved	00 H	Data 3	00 H
Reserved	00 H	Data 4	00 H
Reserved			

Note
To read monitoring parameters, drive fault information and other drive running status via CANopen protocol, refer to Sending message format and Returned message format in the following tables to organize the message.

Sending message format of read operation is described as follows:

CAN	CANopen Data	Description
11-bit ID	0×600 + Node-ID	The Node-ID of the equipment is set via the DIP switch.
RTR	0	Remote frame sign "0"
DATA0	Command code returned	Correct: 0x4B Incorrect: 0x80
DATA1	Index low byte	Function parameter group (0xF0 for group F0)
DATA2	Index high byte	Mapping address
DATA3	Sub-index	SN in the function parameter group (0x02 for 02)
DATA4	Data 1	Data low byte
DATA5	Data 2	Data high byte
DATA6	Data 3	Correct: 0 Incorrect: SDO operation failed error code DATA7 Data 4

Returned message format of read operation is described as follows:

CAN	CANopen Data	Description
11-bit ID	0×580 + Node-ID	The Node-ID of the equipment is set via the DIP switch.
RTR	0	Remote frame sign "0"
DATA0	Command code (0×40)	0×40 read command
DATA1	Index low byte	Function parameter group (0xF0 for group F0)
DATA2	Index high byte	Mapping address
DATA3	Sub-index	SN in the function parameter group (0x02 for 02)
DATA4	Data 1	Reserved
DATA5	Data 2	Reserved
DATA6	Data 3	Reserved
DATA7	Data 4	Reserved

6.10.3 Write RUN Command

When F0-02 $=2$, you can write running command via communication on host computer, such as forward run, reverse run, forward jog, reverse jog and stop of the AC drive.

Communication address and descriptions of running command are defined in the following table.

RUN Command Communication Address	RUN Command Description
2000 H	1: Forward run
	2: Reverse run
	3: Forward jog
	4: Reverse jog
	5: Coast to stop
	6: Decelerate to stop
	7: Fault reset

Here takes CANlink protocol as an example to describe communication process of host computer to write running command to the AC drive.

Before writing the running command, set baud rate and local address. The settings of related parameters are as follows:

Function Parameter	Setting Description
Fd-00 (Baud rate)	Select the CANlink baud rate in thousands position of Fd-00. You must set the same baud rate in the master and slave. Otherwise, the communication will not be implemented.
Fd-02 (Local address)	The CANlink address range is 1 to 63.

Suppose that CANlink master address is 0×01 and AC drive address is 0×02 (settable, range: 1 to 63). The running command to be written is reverse jog. The communication address is 0×2000.

The format of the message sent by the master is as follows:

Message ID (Hex)	Data Length	Data (Hex)
0×11050201	4	00042000

The format of the response message returned by the slave is as follows:

Message ID (Hex)	Data Length	Data (Hex)
0×10050102	4	00042000

Sending message and response message are described as follows:

Sending Message			Response Message		
Message ID 11050201H	Arbitration sign	1000 (binary)	$\begin{aligned} & \text { Message ID } \\ & 11050102 \mathrm{H} \end{aligned}$	Arbitration sign	1000 (binary)
	Q\&A sign	1 (binary)		Q\&A sign	1 (binary)
	Command code	05H		Command code	05H
	Target address	02H		Target address	01H
	Source address	01H		Source address	02H
Data length		4 (decimal)	Data length		4 (decimal)
Write data high byte		00H	Write data high byte		00H
Write data low byte		04H	Write data low byte		04H
Write address high byte		20 H	Write address high byte		20 H
Write address low byte		OOH	Write address low byte		00H

Note
To write other running commands via CANlink protocol, refer to Sending CANlink frame and Returned CANlink frame in the following tables to organize message.

Sending CANlink frame of write operation is as follows:

CAN	CANlink	Description
IDbit28-25	Arbitration sign	The arbitration sign of the command frame is 1000.
IDbit24	Q\&A sign	Q\&A sign: 1 is the question frame.
IDbit23-16	Command code	Write register command is 0x05.
IDbit15-8	Target address	CANlink target address
IDbit7-0	Source address	CANlink local address
DATA1	Data	Write data high byte
DATA2	Data	Write data low byte
DATA3	Data	Write address high byte
DATA4	Data	Write address low byte

Returned CANlink frame of write operation is as follows:

CAN	CANlink	Description
IDbit28-25	Arbitration sign	The arbitration sign of the command frame is 1000.
IDbit24	Q\&A sign	Q\&A sign: 0 is the answer frame.
IDbit23-16	Command code	Write register command is 0x05.
IDbit15-8	Target address	CANlink target address
IDbit7-0	Source address	CANlink local address
DATA1	Data	Write data high byte
DATA2	Data	Write data low byte
DATA3	Data	Write address high byte
DATA4	Data	Write address low byte

6.10.4 Write Frequency/Torque Reference

You can set frequency reference, torque limit, V/F separation voltage, PID reference and PID feedback via communication address 1000 H . The data range is -10000 to 10000, corresponding to -100.00% to 100.00%.

For example, to set main frequency reference to 8000 by using Modbus protocol, first set F0-03 $=9$ and send write command 01061000 1F 4084 CA. In the command,

- 01 H (settable): AC drive address
- 06 H : write command
- 1000 H : Communication address of giving the toque reference
- 1F40H: torque reference (converted into decimal 10000)
- 84CAH: CRC check

To set torque reference to -8000, send write command 01061000 E0 C0 C4 9A. In the command, EOCO is the lowest four bits of the hexadecimal number converted from -8000.

Note	Range of frequency reference given via communication is -10000 to 10000, corresponding to -100.00% to 100.00%. -100.00% corresponds to negative maximum frequency, 0.00\% corresponds to minimum frequency, and 100.00% corresponds the maximum frequency.
Suppose that $F 0-10=50 \mathrm{~Hz}$, if frequency reference in write command is 1 F 40 H, converted to decimal 8000 , frequency reference that is written is $50 \times 80.00 \%$ $=40 \mathrm{~Hz}$.	

Sending Message		Response Message	
ADDR	01 H	ADDR	01 H
CMD	06 H	CMD	06 H
Parameter address high bits	10 H	Parameter address high bits	10 H
Parameter address low bits	00 H	Parameter address low bits	00 H
Data content high bits	1 FH	Data content high bits	1 FH
Data content low bits	40 H	Data content low bits	40 H
CRC high bits	84 H	CRC high bits	84 H
CRC low bits	CAH	CRC low bits	CAH

6.10.5 Control of Digital Output (DO, Relay, FMR)

If a digital output terminal is set for function 20: Communication setting, you can control digital output by using host computer.

The communication address and command of digital outputs are defined in the following table.
Related communication address and command are as follows:

Communication Address	Command Description
2001H	Bit0: DO1 output
	Bit1: DO2 output
	Bit2: Relay1 output
	Bit3: Relay2 output
	Bit4: FMR output
	Bit5: VDO1
	Bit6: VDO2
	Bit7: VDO3
	Bit8: VDO4
	Bit9: VDO5

6.10.6 Control of Analog and High-speed Pulse Output (AO, FMR)

When F5-06, F5-07 or F5-08 = 12, you can control analog and high-speed pulse output by using host computer.
The communication address and command of analog and high-speed pulse outputs are defined in the following table.

Related communication address and command are as follows:

Communication Address		Command Description	
AO1	2002 H	0 to 7FFF indicates 0% to 100%	
AO2	2003 H		
FMP	2004 H		

6.10.7 Parameter Initialization

You can initialize parameters via host computer by using this function. If FP-00 (user password) is set to a non-zero value, verify password on host computer.

Once password passes verification, host computer performs parameter initialization within 30s. The communication address of password verification is 1 F00H. Directly write correct user password to this address to complete verification.

The communication address and parameter initialization command are defined in the following table.

Communication Address	Command Description
1 F01H	1: Restore factory parameters
	2: Clear the records
	4: Restore the user backup parameters
	501: Back up the current user parameters

6.11 Auxiliary Function

6.11.1 Jog

Jog is used to test equipment. In jog running, F6-00 must be set to 0 (direct start) and F6-10 must be set to 0 (Decelerate to stop).

Function Code	Parameter Name	Setting Range	Default
F0-25	Acceleration/Deceleration time base frequency	0: Maximum frequency (F0-10) 1: Frequency reference 2: 100 Hz	0
F8-00	Jog frequency reference	0.00 Hz to maximum frequency	2.00 Hz
F8-01	Jog acceleration time	0.0 s to 6500.0 s	20.0 s
F8-02	Jog deceleration time	0.0 s to 6500.0 s	20.0 s

Jog acceleration time indicate time to accelerate from 0 Hz to F0-25.
Jog deceleration time indicate time to decelerate from F0-25 to 0 Hz .

Function Code	Parameter Name	Setting Range	Default
F8-27	Set highest priority to terminal JOG function	0: Disabled 1: Enabled	0

This function parameter determines whether to set the highest priority to terminal JOG function. If this function is enabled and any of F4-00 to F4-09 is set to 4 (forward jog) or 5 (reverse jog) becomes active, the AC drive enters jog running status immediately.

Figure 6-59 Jog running

Follow the steps below to control the drive jog via the operation panel.

Steps	Forward jog	Reverse jog
1	Set F7-01 = 3 to allocate the MF.K key with forward jog.	Set F7-01 = 4 to allocate the MF.K key with reverse jog. Set F8-13 = 0 to allow reverse running.
2	Set F0-02 = 0 to select operation panel as command source.	Set F0-02 = 0 to select operation panel as command source.
3	Set F8-00, F8-01 and F8-02 properly.	Set F8-00, F8-01 and F8-02 properly.
4	In stop status, press down the The drive starts to jog in forward direction. After you release the key, the AC drive decelerates to stop.	In stop status, press down the key. The drive starts to jog in reverse direction. After you release the key, the AC drive decelerates to stop.

6.11.2 Jump Frequency, FWD/REV Switchover Dead-zone Time, Reverse Run Prohibited

Jump Frequency

The frequency jump function enables the AC drive to avoid mechanical resonance point of load. The drive can be set with two separate frequencies. If both are set to 0 , the frequency jump function is disabled.

Figure 6-60 Jump frequency

In the preceding figure, when running frequency accelerates to the value that is close to jump frequency during acceleration, the AC drive runs for a period at current frequency reference and then jumps over jump frequency. The jump width is twice of F8-11.

When running frequency decelerates to the value close jump frequency during deceleration, the AC drive runs for a period at current frequency reference and then jumps over jump frequency. The jump width is twice of F8-11.

Function Code	Parameter Name	Setting Range	Default
F8-09	Frequency jump 1	0.00 Hz to max. frequency	0.00 Hz
F8-10	Frequency jump 2	0.00 Hz to max. frequency	0.00 Hz
F8-11	Frequency jump band	0.00 Hz to max. frequency	0.00 Hz
F8-22	Jump frequency function	0: Disabled $1:$ Enabled	0

FWD/REV Switchover Dead-zone Time
Figure 6-61 Forward/Reverse run switchover dead-zone time

Function Code	Parameter Name	Setting Range	Default
F8-12	Forward/Reverse run switchover dead-zone time	0.0s to 3000.0s	0.0s

Reverse Run Prohibited
Figure 6-62 Control of reverse run

Function Code	Parameter Name	Setting Range	Default
F8-13	Reverse RUN selection	0: Enabled 1: Disabled	0
F0-09	Running direction	0: Run in the default direction (FWD/REV indicator off) 1: Run in the direction reverse to the default direction (FWD/REV indicator on)	0

The original direction of motor will be resumed after parameter initialization. Do not use this function in applications where changing rotation direction of motor is prohibited after system commissioning is completed.

6.11.3 Frequency Detection (FDT)

This function sets detection values of output frequency and sets hysteresis level for the frequency detection function.

Figure 6-63 Frequency detection

Function Code	Parameter Name	Setting Range	Default
F8-19	Frequency detection value 1	0.00 Hz to max. frequency	50.00 Hz
F8-20	Frequency detection hysteresis 1	0.0% to 100.0%	5.0%
F8-28	Frequency detection value 2	0.00 Hz to max. frequency	50.00 Hz
F8-29	Frequency detection hysteresis 2	0.0% to 100.0%	5.0%

F8-19: It sets detection value for digital output function 3 . When running frequency exceeds the detection value, digital output terminal set for function 3 becomes on.

F8-20: It sets hysteresis level for the frequency detection function. It is a percentage of the
frequency detection value (F8-19).

6.11.4 Frequency Reference Reached Detection Width

This function sets the detection width of the frequency reference.
Figure 6-64 Frequency reached detection width

Function Code	Parameter Name	Setting Range	Default
F8-21	Detection width of target frequency reached	0.0% to $100.0 \% \%$	0.0%

6.11.5 Acceleration/Deceleration Time Switchover

This function selects acceleration/deceleration time according to running frequency range during drive running. This function is active only when motor 1 is selected and acceleration/ deceleration time is not switched over via external DI terminal.

Figure 6-65 Acceleration/Deceleration time switchover

During acceleration, if the running frequency is below F8-25, acceleration time 2 is selected. If it is above F8-25, acceleration time 1 is selected.

During deceleration, if the running frequency is above F8-26, deceleration time 1 is selected. If it is below F8-26, deceleration time 2 is selected.

Function Code	Parameter Name	Setting Range	Default
F8-25	Switchover frequency of acceleration time 1 and acceleration time 2	0.00 Hz to max. frequency	0.00 Hz
F8-26	Switchover frequency of deceleration time 1 and deceleration time 2	0.00 to max. frequency	0.00 Hz

6.11.6 Frequency Reached Detection

This function sets the detection value and detection width of frequency reached.
Figure 6-66 Frequency reached detection

The drive provides two groups of frequency detection parameters for the digital output functions 26 and 27. When the output frequency is in the range of the detection width, the digital output terminal set for function 26 or 27 becomes on.

Function Code	Parameter Name	Setting Range	Default
F8-30	Detection of frequency 1	0.00 Hz to max. frequency	50.00 Hz
F8-31	Detection width of frequency 1	0.0% to 100.0% (max. frequency)	0.0%
F8-32	Detection of frequency 2	0.00 Hz to max. frequency	50.00 Hz
F8-33	Detection width of frequency 2	0.0% to 100.0% (max. frequency)	0.0%

6.11.7 Zero Current Detection

If output current of the AC drive is equal to or smaller than the value set in F8-34 and the duration exceeds the value set in F8-35, digital output terminal set for function 34 becomes on.

Figure 6-67 Zero current detection

Function Code	Parameter Name	Setting Range	Default
F8-34	Zero current detection level	0.0% to 300.0% (rated motor current)	5.0%
F8-35	Zero current detection delay	0.00 s to 600.00 s	0.10 s

6.11.8 Current Detection

The drive provides two groups of current detection level and width.
If output current of the AC drive reaches the width, digital output terminals set for functions 28 and 29 become on.

Figure 6-68 Current detection

Function Code	Parameter Name	Setting Range	Default
F8-38	Detection level of current 1	0.0% to 300.0% (rated motor current)	100.0%
F8-39	Detection width of current 1	0.0% to 300.0% (rated motor current)	0.0%
F8-40	Detection level of current 2	0.0% to 300.0% (rated motor current)	100.0%
F8-41	Detection width of current 2	0.0% to 300.0\% (rated motor current)	0.0%

6.11.9 Timing Function

Function Code	Parameter Name	Setting Range	Default
F8-42	Timing function	0: Disabled 1: Enabled	0
F8-43	Running time setting channel	0: Set by F8-44 $1:$ Al1 $2: ~ A l 2 ~$	0
		$3:$ Al3 $(100 \%$ of analog input corresponds to the value of F8-44)	
F8-44	Running time	0.0 to 6500.0 min	

These function parameters define the timing function of the drive. Once it is enabled, the AC drive starts timing since start. When the set timing running time is reached, the AC drive stops automatically and digital output terminal set for function 30 becomes on.

The AC drive starts timing from 0 again for each start. You can view remaining timing running time in U0-20.

6.11.10 Al1 Input Voltage Upper/Lower Limit

Function Code	Parameter Name	Setting Range	Default
F8-45	Al1 input voltage lower limit	0.00 V to F8-46	3.10 V
F8-46	Al1 input voltage upper limit	F8-45 to 10.00 V	6.80 V

These two functiomn parameters indicate whether Al1 input voltage is in the setting range. If Al1 input is larger than F8-46 or smaller than F8-45, digital output terminal set for function 31 becomes on.

6.11.11 IGBT Temperature

Function Code	Parameter Name	Setting Range	Default
F8-47	IGBT temperature threshold	$0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$

This function parameter sets IGBT temperature threshold. When heatsink temperature reaches the value set in F8-47, digital output terminal set for function 35 becomes on.

6.11.12 Cooling Fan

Function Code	Parameter Name	Setting Range	Default
F8-48	Cooling fan working mode	0: Working during drive running $1:$ Working continuously	0

This function parameter sets working mode of cooling fan.

- $\mathrm{F} 8-48=0$: Working during running

The fan works during drive running. When the drive stops, the fan works if heatsink temperature is above $40^{\circ} \mathrm{C}$ and stops if heatsink temperature is below $40^{\circ} \mathrm{C}$.

- F8-48 = 1: Working continuously

The fan keeps working after power-on.

6.11.13 Hibernating and Wakeup

The hibernating and wakeup function is used in water supply application. Generally, set wakeup frequency equal to or higher than hibernating frequency. If they are set to 0 , the function is disabled.

Figure 6-69 Hibernating and wakeup

Function Code	Parameter Name	Setting Range	Default
F8-49	Wakeup frequency	Hibernating frequency (F8-51) to max. frequency (F0-10)	0.00 Hz
F8-50	Wakeup delay time	0.0 s to 6500.0s	0.0 s
F8-51	Hibernating frequency	0.00 Hz to wakeup frequency (F8-49)	0.00 Hz
F8-52	Hibernating delay time	0.0 s to 6500.0s	0.0 s

During drive running, when frequency reference is equal to or smaller than F8-51, the AC drive enters hibernating state after delay set in F8-52.
In hibernating state, when frequency reference is equal to or larger than F8-49, the AC drive wakes up after delay set in F8-50.

When frequency reference setting channel is PID reference, whether to perform PID operation in hibernating state is determined by FA-28 (Selection of PID operation at stop).

6.11.14 Running Time Threshold This Time

Function Code	Parameter Name	Setting Range	Default
F8-53	Running time threshold this time	0.0 to 6500.0 min	0.0 min

If running time this time reaches the value set in this parameter, digital output terminal set for function 40 becomes on, indicating that the running time this time is reached. It is effective only for drive running this time. The previous running time is not added.

6.11.15 Output Power correction

Function Code	Parameter Name	Setting Range	Default
F8-54	Output power correction coefficient	0.00% to 200.0%	100.0%

This function parameter sets output power correction coefficient. When output power (U0-05) is not equal to expected value, perform linear correction via this parameter.
6.11.16 Deceleration Time for Emergency Stop

Function Code	Parameter Name	Setting Range	Default
F8-55	Deceleration time for emergency stop	0 to 6553.5	Model dependent

When the system is in emergency status, the AC drive decelerates based on the setting of F855 (deceleration time for emergency stop). If F8-55 = 0 in V/F control, the AC drive decelerates based on the setting of F0-19 (Acceleration/Deceleration time unit).

7.1 About Use of GT600 Terminals 220
7.2 Serial Communication 223
7.3 About Multi-functional Extension Interfaces 224
7.4 Definition of Communication Data Address 225
7.5 Modbus Communication Protocol. 228

Chapter 7 Interfaces and Communication

7.1 About Use of GT600 Terminals

- Use of DI Terminals

There are five digital inputs on control board, DI1 to DI5. There are five extra digital inputs on optional I/O extension board, DI6 to DI10,which are available to use if you have this option installed.

All digital input terminals on the drive are two-state. DI configuration is set by F4-38 (for DI1 to DI5) and F4-39 (for DI6 to DI10). Default value for these two parameters is 00000, which means all DI terminals use the following logic configuration:

- Logic 0 (terminal is inactive) is when DI terminal 24 V line is not shorted to COM.
- Logic 1 (terminal is active) is when DI terminal 24 V line is shorted to COM.

If necessary, you can change logic configuration for any of DI terminals by setting relevant bit in correct parameter.

Parameters F4-00 to F4-09 define which of the 50 available functions is allocated to each of the ten DI terminals.

Note
Only DI5 is allowed to receive high-speed pulse signals. If your application uses high-speed pulse counts, then you must use DI5 for this input.

- Filter Time and Delay Functions

F410 sets a filter time on the DI signal to improve performance of the drive in conditions of strong electrical interference.

The drive also provides a signal delay function on digital inputs DI1 to DI3 to support some applications that require a delayed digital input. You can set the delay separately for each of the three DI terminals:

- Function code F4-35 controls the delay on DI1.
- Function code F4-36 controls the delay on DI2.
- Function code F4-37 controls the delay on DI3.

- Use of DO Terminals

There are three digital output terminals on control board:

- FM is a transistor output capable of driving a 24 V DC low-voltage circuit.
- DO1 is a transistor output capable of driving a 24 V DC low-voltage circuit.
- TA/TB/TC is a relay output that can drive a 250 V AC control circuit.

There are two additional digital outputs on the optional I/O extension board, which are available to use if you have this option installed.

- DO2 s a transistor output capable of driving a 24 V DC low-voltage circuit.
- PA/PB/PC is a relay output that can drive a 250 V AC control circuit.

Function codes F5-01 to F5-05 define how DO terminals indicate the running status and alarm information for the AC drive. There are 40 functions available to use for these function codes.

Terminal	Corresponding Function Code	Output Feature Description
FM-CME	F5-06 when F5-00 = 0	Transistor Able to output high-speed pulses 10 Hz to 100 KHz Drive capacity: 24 VDC, 50 mA
	F5-01 when F5-00 = 1	Transistor Drive capacity: 24 VDC, 50 mA
TA-TB-TC	F5-02	Relay Drive capacity: 50 VAC, 0.2 A/30 VDC, 1 A
PA-PB-PC	F5-03	Extension card, relay; drive capacity: 50 VAC, 0.2 A/30 VDC, 1 A
D01-CME	F5-04	Transistor Drive capacity: 24 VDC, 50 mA
DO2-CME	F5-05	Extension card transistor Drive capacity: 24 VDC, 50 mA

When F5-00 = 0, FM terminal is high-speed pulse output. Frequency of pulses on this DO terminal indicates the value of internal running parameters. Higher values of internal running parameters produce higher pulse frequencies. Value 100% corresponds to a pulse frequency of 100 kHz .

- Use of AI Terminals

The drive supports a maximum of three analog input terminals. Of these, Al1 and Al2 are on the control board, and $\mathrm{Al3}$ is on the optional extension card.

Terminal	Input Signal Characteristic
Al1-GND	It receives the signal of 0 to 10 VDC.
AI2-GND	If J 9 jumps to the "V" position, Al receives voltage signal of 0 to 10 VDC. If J 9 jumps to the "I" position, Al receives current signal of 0 to 20 mA. AI3-GND It receives signal of -10 to 10 VDC.

Analog inputs allow an external voltage or current signal to set frequency reference, torque reference, voltage setting at V/F separation, and PID reference and feedback. F4-13 to F4-27 define relationship between analog input voltage or current signals and actual controlled setting or feedback.

Sampling of analog values on AI terminals is possible by reading function codes:

- U0-09 shows value of AI1.
- U0-10 shows value of AI2.
- U0-11 shows value of AI3.

Use of AO Terminals
The drive supports a maximum of two analog output terminals. AO1 is on the control board and AO 2 is on the optional extension card.

Terminal	Input Signal Characteristic
AO1-GND	If J5 jumps to the "V" position, AO outputs voltage signal of 0 to 10 VDC. If J5 jumps to the "I" position, AO outputs current signal of 0 to 20 mA.
AO2-GND	It outputs voltage signal of 0 to 10 VDC or current signal of 0 to 20 mA.

F5-07 and F5-08 define how AO terminals indicate the drive internal running parameters in analog mode.

It is possible to change sense, offset and scaling of parameters on analog outputs. This is by correcting outputs according to the following formula:
$Y=k X+b$,
Where:

- $\mathrm{Y}=$ output parameter after correction.
- X = output parameter before correction.
- $\mathrm{k}=$ scaling factor set by F5-11.
- $b=0$ offset set by F5-10.

Note that scaling and offset values can be positive or negative.

- Use of PG Terminal

The FVC mode with sensor, set by function code F0-01 = 1 , helps to improve stability and accuracy of motor speed control. In this case it is necessary to install an encoder on motor to provide sensor input to PG card that the drive requires.

There are four versions of PG card to support different encoder types:

- Differential encoder
- UVW encoder and wire-saving UVW encoder
- Resolver
- Open-collector encoder

Settings of encoder parameters F1-27 and F1-28 depend on type of encoder used with the drive. The following table describes function code settings for each of encoder types.

Encoder Type	Function Code	Description
Differential encoder	F1-27	Set to the number of pulses for each motor revolution.
	F1-28 $=0$	ABZ incremental encoder
UVW encoder	F1-27	Set to the number of pulses for each motor revolution.
	F1-28 $=1$	UVW incremental encoder.
Resolver	F1-28 $=2$	Resolver
Open-collector encoder	F1-27	Set to the number of pulses for each motor revolution.
	F1-28 $=0$	ABZ incremental encoder.
Wire-saving UVW encoder	F1-27	Set to the number of pulses for each motor revolution.
	F1-28 $=4$	Wire-saving UVW encoder.

7.2 Serial Communication

You must install relevant extension card in the drive and set F0-28 correctly before you can use one of available serial communication protocols. The available serial communication protocols are:

- RS485
- PROFIBUS-DP
- CANopen
- CANlink

Note that function code F0-28 has correct value for the CANlink communication protocol by default.
See 7.5.5 Group Fd Communication Parameter Description for instructions to set hardware communication parameters for the relevant communication protocol. You must set identical communication rate and data format for the drive and for the host computer, otherwise, communications will fail.

The drive supports Modbus-RTU slave communication protocol, which has the following functions:

- View and modify the parameters.
- View various running status parameters.
- Send Run command and frequency reference to the AC Drive from host computer.

The drive arranges parameters, running status parameters and run commands by using register parameter address mode. Host computer defines protocol of communication data interaction.

7.3 About Multi-functional Extension Interfaces

The following table lists extension cards that are available for use with the drive.

Name	Model	Function	Remark
I/O extension card 1	GT60IO1	Provides the following: - Five extra DI terminals. - Analog voltage input AI3 (with isolation) for connection to PT100 or PT1000. - A relay output. - A digital output. - An analog output.	Available for all models.
I/O extension card 2	GT60IO2	Provides three extra DI terminals.	Available for all models.
Modbus communication card	GT60TX1	RS485 communication adapter with isolation	Available for all models.
CANlink communication card	GT60CAN1	CANlink communication adapter	Available for all models.
CANopen communication card	GT60CAN2	CANopen communication adapter	Available for all models.
Profibus-DP communication card	GT60DP2	Profibus-DP communication card	Available for all models.
User programmable card	GT60PC1	User-programmable extension card, completely compatible with the Inovance H1U series PLC.	Available for all models.
Differential encoder interface card	GT60PG1	Differential resolver interface card. Requires a 5 VDC power supply.	Available for all models.
Resolver interface card	GT60PG4	For use with a resolver that has an excitation frequency of 10 kHz . The card has a DB9 interface.	Available for all models.
Open-collector encoder interface card	GT60PG5	Open-collector encoder interface card. Requires a 15 VDC power supply.	Available for all models.
Open-collector encoder interface card	GT60PG5D	Open-collector encoder interface card with optional multiplying frequency division output. Requires a 15 VDC power supply.	Available for all models.
Differential encoder interface card	GT60PG6	Differential rotary encoder interface card Requires a 5 VDC power supply.	Available for all models.
Differential encoder interface card	GT60PG6D	Differential rotary encoder interface card with optional multiplying frequency division output. Requires a 5 VDC power supply.	Available for all models.
Multi-functional encoder card	GT60PGMD	Compatible of differential input, opencollector input, push-pull input Supports differential output and opencollector output	Available for all models.

7.4 Definition of Communication Data Address

The drive supports four communication protocols (Modbus-RTU, CANopen, CANlink, and PROFIBUSDP). The user programmable card and point-to-point communication are derivation of CANlink protocol. Host computer can implement control such as monitoring and parameter viewing and modification on the $A C$ drive through their protocols.

The drive's communication data is classified into parameter data and non-parameter data. The nonparameter data includes running commands, running status, running parameters and alarm information.

7.4.1 Parameter Data

The parameter data provides important parameters of the AC drive. The parameter data is described as below:

Parameter data	Group F (read-write)	F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, FA, FB, FC, FD, FE, FF
	Group A (read-write)	A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, AA, AB, AC, AD, AE, AF

Communication addresses of parameter data are defined as follows:

1. When parameter data is read by means of communication

For groups F0 to FF and A0 to AF, the high 16 bits of the communication address indicate the group number and the low 16 bits indicate the parameter number in the group.

Example:
Communication address of F0-16 is F010H, where F0H represents group F0 and 10H is the hexadecimal data format of serial number 16 in the group.

Communication address of $\mathrm{AC}-08$ is AC 08 H , where ACH represents group AC and 08 H is the hexadecimal data format of serial number 8 in the group.
2. When parameter data is written by means of communication

For groups F0 to FF, whether the high 16 bits in communication address are 00 to 0 F or F0 to FF is decided by whether the high 16 bits are written to EEPROM. The low 16 bits indicate parameter number in the group.

Example:
F0-16: If it need not be written to EEPROM, communication address is 0010 H . If it needs to be written to EEPROM, communication address is F 010 H .

For groups A0 to AF, whether the high 16 bits in communication address are 40 to 4 F or A0 to AF is decided by whether the high 16 bits are written to EEPROM. The low 16 bits indicate parameter number in the group.

AC-08: If it need not be written to EEPROM, communication address is 4 C 08 H . If it needs to be written to EEPROM, communication address is AC 08 H .

7.4.2 Non-Parameter Data

Non-parameter data	Status data (read- only)	Group U (monitoring parameters), AC drive fault information and AC drive running status
	Control parameters (write-only)	Control commands, communication setting values, DO control, AO1 control, AO2 control, high-speed pulse (FMP) output control and parameter initialization

- Status Data

Status data includes group U (monitoring parameters), AC drive fault description and AC drive running status.

1. Group U (monitoring parameters)

The high 16 bits in communication address of U0 to UF is 70 to 7 F and the low 16 bits indicate the function code number in the group. For example, the communication address of U0-11 is 700BH.
2. AC drive fault description

When fault description is read via communication, the communication address is 8000 H . You can obtain current fault code of the AC drive by reading the address.
3. $A C$ drive running status

When the drive running status is read via communication, the communication address is 3000 H . You can obtain current running status information of the AC drive by reading the address. The running status is defined in the following table.

Communication Address of AC Drive's Running Status	Status Definition
3000 H	1: Forward run
	2: Reverse run
	3: Stop

Control Parameters

The control parameters include control command, communication setting values, DO control, AO1 control, AO2 control, high-speed pulse (FMP) output control and parameter initialization.

- Control commands

When F0-02 (command source selection) is set to 2 (serial comms.), you can implement control such as start/stop of the AC drive by using communication address. The control commands are defined in the following table.

Communication Address of AC Drive's Running Status	Status Definition
2000 H	1: Forward run
	2: Reverse run
	3: Forward jog
	4: Reverse jog
	5: Coast to stop
	6: Decelerate to stop
	7: Fault reset

- Communication reference

Communication setting values include data set via communication such as frequency reference, torque limit, V/F separation voltage, PID reference and PID feedback. Communication address is 1000 H . The range is $-10000-10000$ and corresponding value range is -100.00% to 100.00%.

- DO control

When a DO terminal is set for function 20 (Communication setting), host computer can implement control on DO terminals of the drive through communication address 2001 H . Control on DO terminals of the drive is defined in the following table.

Communication Address of Drive Running Status	Status Definition
2001H	BIT0: DO1 output control
	BIT1: DO2 output control
	BIT2: Relay1 output control
	BIT3: Relay2 output control
	BIT4: FMR output control
	BIT5: VDO1
	BIT6: VDO2
	BIT7: VDO3
	BIT8: VDO4
	BIT9: VDO5

- AO1 control, AO2 control, high-speed pulse (FMP) output control

When AO1, AO2 and FMP are set to function 12 (Communication setting), host computer can implement control on AO and high-speed pulse outputs by means of communication addresses. The definition is provided in the following table.

Communication Address of AO1, AO2 and FMP Output	Command Definition	
AO1	2002 H	0 to 7FFF indicates 0% to
AO2	2003 H	100%
FMP	2004 H	

- Parameter initialization

This function is required when you need to perform parameter initialization on the drive by using host computer.
If FP-00 (User password) is set to a non-zero value, pass password verification first. Host computer performs parameter initialization within 30s after password verification is successful.

Communication address of password verification via communication is 1 FOOH . Directly write correct user password to this address to perform password verification.
Communication address of parameter initialization by means of communication is 1 F 01 H , defined in the following table.

Communication Address of Parameter Initialization	Command Definition
1 F01H	1: Restore default settings
	2: Clear records
	4: Restore user backup parameters
	501: Back up current user parameters

7.5 Modbus Communication Protocol

The drive provides RS485 communication interface and supports Modbus-RTU communication protocol so that the user can implement centralized control, such as setting running commands and function codes, and reading running status and fault information of the AC drive, by using a PC or PLC.

This protocol defines content and format of transmitted messages during serial communication, including master polling (or broadcasting) format and master coding method (function code for the action, transmission data, and error check). The slave uses the same structure in response, including action confirmation, data returning and error check. If an error occurs when the slave receives a message, or the slave cannot complete the action required by the master, the slave returns a fault message as a response to the master.

7.5.1 Application

The AC drive is connected to a "single-master multi-slave" PC/PLC control network with RS485 bus.

7.5.2 Bus Structure

- Interface mode

The RS485 extension card GT60TX1 must be inserted into the AC drive.

- Topological structure

The system consists of a single master and multiple slaves. In the network, each communication device has a unique slave address. A device is the master (can be a PC, a PLC or an HMI) and initiates communication to perform parameter read or write operations on slaves. The other devices (slaves) provide data to respond to query or operations from the master. At the same moment, either the master or the slave transmits data and the other can only receives data.
The address range of the slaves is 1 to 247 , and 0 is broadcast address. A slave address must be unique in the network.

- Transmission mode

The asynchronous serial and half-duplex transmission mode is used. During asynchronous serial communication, data is sent frame by frame in the form of message. In Modbus-RTU protocol, an interval of at least 3.5 -byte time marks the end of the previous message. A new message starts to be sent after this interval.

The communication protocol used by the drive is the Modbus-RTU slave communication protocol, which allows the drive to provide data to respond to "query/command" from the master or execute the action according to "query/command" from the master.

The master can be a PC, an industrial device, or a PLC. The master can communicate with a single slave or send broadcast messages to all slaves. When the master communicates with a single slave, the slave needs to return a message (response) to "query/command" from the master. For a broadcast message sent by the master, the slaves need not return a response.

7.5.3 Data Format

The drive supports reading and writing of word-type parameters only. Reading command is 0×03 and writing command is 0×06. It does not support reading and writing of bytes or bits.

The Modbu-RTU protocol communication data format of the drive is as follows:

In theory, host computer can read several consecutive parameters (n can reach up to 12) but the last parameter it reads must not jump to the next parameter group. Otherwise, an error occurs on response.

Calculate CRC
A
If the slave detects a communication frame error or reading/writing failure is caused by other reasons, an error frame will be returned as follows:

The frame format is described in the following table.

Frame header (START)	Greater than the 3.5-byte transmission idle time
Slave address (ADR)	Communication address : 1 to 247 $0:$ Broadcast address
Command code (CMD)	$03:$ Read slave parameters $06:$ Write slave parameters
Function code address (H)	It is the internal parameter address of the AC drive, expressed in hexadecimal format. The parameters include functional parameters and non-functional parameters (running status and running command). During transmission, low-order bytes follow the high-order bytes.
Function code address (L)	It is the number of function codes read by this frame. If it is 1, it indicates that one function code is read. During transmission, low bytes follow high bytes. In the present protocol, only one function code is read once, and this field is unavailable.
Number of function codes (L)	It is the response data or data to be written. During transmission, low-order bytes follow the high-order bytes.
Data (H)	It is the detection value (CRC16 verification value). During transmission, low-order bytes follow the high-order bytes.
Data (L)	It is 3.5-byte transmission time. CRC CHK high bytes
CRC CHK low bytes	

CRC Check
In Modbus-RTU mode, a message includes a CRC-based error-check field. The CRC field checks content of entire message. The CRC field is two bytes, containing a 16 -bit binary value. The CRC field is calculated by transmitting device, and then added to message. The receiving device recalculates a CRC value after receiving message, and compares the calculated value with the CRC value in the received CRC field.

The CRC is first stored to 0xFFFF. Then a procedure is invoked to process the successive 8 -bit byte in the message and the value in the register. Only the eight bits in each character are used for the CRC. The start bit, stop bit and the parity bit do not apply to the CRC.

During generation of the CRC, each eight-bit character is in exclusive-OR (XOR) with the content in the register. Then the result is shifted in the direction of the least significant bit (LSB), with a zero filled into the most significant bit (MSB) position. The LSB is extracted and examined. If the LSB was a 1 , the register then performs XOR with a preset value. If the LSB was a 0 , no XOR is performed. This process is repeated until eight shifts have been performed. After the last (eighth) shift, the next eight-bit byte is in XOR with the register's current value, and the process repeats for eight more shifts as described above. The final value of the register, after all the bytes of the message have been applied, is the CRC value.

The CRC is added to the message from the low-order byte followed by the high-order byte. The CRC simple function is as follows:
unsigned int crc_chk_value (unsigned char *data_value,unsigned char length)
\{
unsigned int crc_value=0xFFFF;
int i;
while (length--)
\{
crc_value^=*data_value++;
for ($\mathrm{i}=0 ; \mathrm{i}<8 ; \mathrm{i}++$)
\{
if (crc_value\&0x0001)
\{ crc_value $=(\text { crc_value>>1 })^{\wedge} 0 x a 001 ;$
\}
else
\{ crc_value=crc_value>>1;
\}
\}
\}
return (crc_value) ;
\}

7.5.4 Definition of Communication Parameter Addresses

- Read and Written Parameters

Function parameters can be read and written (except those which cannot be changed because they are only for the factory use or for monitoring).

Parameter group No. and parameter identifying No. are used to express parameter address.

- High-order bytes: F0 to FF (groups F), A0 to AF (groups A), 70 to 7F (group U)
- Low-order bytes: 00 to FF

For example, to read parameter F3-12, communication address of F3-12 is expressed as 0xF30C.

Note

- Group FF: They are factory parameters. The parameters cannot be read or changed.
- Group U: These parameters can only be read.

Some parameters cannot be modified when the AC drive is running. Some parameter cannot be modified regardless of status of the AC drive. In addition, pay attention to setting range, unit and description of parameters when modifying them.

Parameter Group	Visited Address	Parameter Address in RAM
F0 to FE	0xF000 to 0xFEFF	0×0000 to 0x0EFF
A0 to AC	0xA000 to 0xACFF	0×4000 to 0x4CFF
U0	0×7000 to 0x70FF	-

Frequent storage to the EEPROM reduces its service life. Therefore, in communication mode, users can change values of certain parameters in RAM rather than storing the setting.

- For groups F parameters, users only need to change high order F of the function code address to 0 .
- For groups A parameters, users only need to change high order A of the function code address to 4.

The function code addresses are expressed as follows:

- High-order bytes: 00 to 0F (groups F), 40 to 4F (groups A)
- Low-order bytes: 00 to FF

For example, if function code F3-12 is not stored into EEPROM, the address is expressed as 030C; if function code A0-05 is not stored into EEPROM, the address is expressed as 4005.

It is an invalid address when being read.
Users can also use command code 07 H to implement this function.

- Stop/RUN Parameters

Para. Address	Description	Para. Address	Description
1000	Communication setting value (Decimal): -10000 to 10000	1010	PID reference
1001	Running frequency	1011	PID feedback
1002	Bus voltage	1012	PLC process
1003	Output voltage	1013	Pulse input frequency, unit: 0.01 kHz
1004	Output current	1014	Feedback speed, unit 0.1Hz
1005	Output power	1015	Remaining running time
1006	Output torque	1016	Al1 voltage before correction
1007	Running speed	1017	Al2 voltage before correction
1008	DI input indication	1018	Al3 voltage before correction
1009	DO output indication	1019	Linear speed
100 A	Al1 voltage	101 A	Current power-on time
100 B	Al2 voltage	101 B	Current running time
100 C	Al3 voltage	101 C	Pulse input frequency, unit 1Hz
100 D	Counting value input	101 D	Communication reference
100 E	Length value input	101 E	Actual feedback speed
100 F	Load speed	101 F	Main frequency reference display
-	-	1020	Auxiliary frequency reference display

Note	\quadCommunication setting value indicates percentage: 10000 corresponds to 100.00%, and -10000 corresponds to -100.00\%.
-With regard to frequency, communication reference is a percentage of F0-10 (maximum frequency).	
- With regard to torque, communication reference is a percentage of F2-10 and A2-48 (corresponding to motor 1 and motor 2, respectively).	

Control command input to AC drive (write-only):

Command Word Address	Command Word Function
2000 H	0001: Forward run
	0002: Reverse run
	0003: Forward jog
	0004: Reverse jog
	0005: Coast to stop
	0006: Decelerate to stop
	0007: Fault reset

Read AC drive state (read-only):

Command Word Address	Command Word Function
}{}	0001: Forward RUN
	0002: Reverse RUN
	0003: Stop

Parameter lock password check
If " 8888 H " is returned, it indicates that password check is passed.

Password Address	Password Content
1 F00H	$* * * * *$

DO terminal control (write-only)

Command Address	Command Content
2001 H	BIT0: DO1 control
	BIT1: DO2 control
	BIT2: RELAY1 control
	BIT3: RELAY2 control
	BIT4: FMR control
	BIT5: VDO1
	BIT6: VDO2
	BIT7: VDO3
	BIT8: VDO4
	BIT9: VDO5

AO1 control (write-only)

Command Address	Command Content
2002 H	0 to 7FFF indicates 0\% to 100%.

AO2 control (write-only)

Command Address	Command Content
2003 H	0 to $7 F F F$ indicates 0% to 100%.

Pulse output control (write-only)

Command Address	Command Content
2004 H	0 to 7 FFF indicates 0% to 100%.

AC drive fault description

AC Drive Fault Address	AC Drive Fault Information	
1F00H	0000: No fault 0001: Reserved 0002 Overcurrent during acceleration, 0003: Overcurrent during deceleration 0004: Overcurrent at constant speed 0005: Overvoltage during acceleration 0006: Overvoltage during deceleration	0007: Overvoltage at constant speed 0008: Buffer resistor overload 0009: Undervoltage 000A: AC drive overload 000B: Motor overload 000C: Power input phase loss 000D: Power output phase loss 000E: IGBT overheat 000F: External fault 0010: Communication fault

AC drive fault description

AC Drive Fault Address	AC Drive Fault Information	
8000	0011: Contactor fault 0012: Current detection fault 0013: Motor auto-tuning fault 0014: Encoder/PG card fault 0015: Parameter read and write fault 0016: AC drive hardware fault 0017: Motor short circuited to ground 0018: Reserved 0019: Reserved 001A: Accumulative running time reached 001B: User-defined fault 1 001C: User-defined fault 2 001D: Accumulative power-on time reached	001E: Load lost 001F: PID feedback lost during running 0028: Fast current limit timeout 0029: Motor switchover error during running 002A: Too large speed deviation 002B: Motor over-speed 002D: Motor overheat 005A: Incorrect setting of PPR of the encoder 005B: Not connecting the encoder 005C: Initial position error 005E: Speed feedback error

7.5.5 Group Fd Communication Parameter Description

Function Code	Parameter Name	Setting Range	Default
Fd-00	Baud rate	Units position (Modubs)	5005
		$0: 300 \mathrm{bps}$	
		$1: 600 \mathrm{bps}$	
		$2: 1200 \mathrm{bps}$	
		$3: 2400 \mathrm{bps}$	
		$4: 4800 \mathrm{bps}$	
		$5: 9600 \mathrm{bps}$	
		$6: 19200 \mathrm{bps}$	
		$7: 38400 \mathrm{bps}$	
		$8: 57600 \mathrm{bps}$	
		$9: 115200 \mathrm{bps}$	

This parameter is used to set transmission speed between host computer and AC drive.
Note that baud rate of host computer must be the same as that of AC drive. Otherwise, communication shall fail. The higher baud rate is, the faster communication will be.

Function Code	Parameter Name	Setting Range	Default
Fd-01	Data format	0: No check <8,N,2>	0
		1: Even parity check <8,E,1>	
		2: Odd parity check <8,O,1>	
		3: No check, data format $<8, \mathrm{~N}, 1>$	

Note that data format of host computer must be the same as that of AC drive. Otherwise,

Function Code	Parameter Name	Setting Range	Default
Fd-02	Local address	1 to 249	1
		$0:$ Broadcast address	

This parameter is used to set address of AC drive. This address is unique (except broadcast address), which is basis for point-to-point communication between host computer and AC drive.

When local address is set to 0 (that is, broadcast address), AC drive can only receive and execute broadcast commands of host computer, but will not respond to host computer.

Function Code	Parameter Name	Setting Range	Default
Fd-03	Response delay	0 to 20 ms	2 ms

This parameter sets interval between AC drive completing receiving data and AC drive sending data to host computer. If response delay is shorter than system processing time, system processing time shall prevail. If response delay is longer than system processing time, system sends data to host computer only after response delay is up.

Function Code	Parameter Name	Setting Range	Default
Fd-04	Communication timeout	0.0s to 60.0s	0.0 s

When AC drive does not receive communication signal within time set in this parameter, it detects communication timeout fault (Err16).

When this parameter is set to 0.0 s , system does not detect communication timeout.
Generally, this parameter is set to 0.0 s . In applications with continuous communication, you can use this parameter to monitor communication status.

Function Code	Parameter Name	Setting Range	Default
Fd-05	Modbus protocol selection and ProfibusDP data frame	Units position: Modbus protocol selection 0: Non-standard Modbus protocol 1: Standard Modbus protocol	0
		Profibus-DP data frame 0: PPO1 format 1: PP02 format 2: PPO3 format 3: PPO5 format	
Function Code	Parameter Name	Setting Range	Default
Fd-06	Current resolution read by communication	$\begin{aligned} & 0: 0.01 \mathrm{~A} \\ & 1: 0.1 \mathrm{~A} \end{aligned}$	0

This parameter is used to set unit of output current read by communication.

Chapter 8 Peripherals and Options

Safety Information	
4 warning	- Do not connect or disconnect wirings while the power is on. Failure to comply will result in electric shock. - Always keep breakers in OFF state at wiring or inspection.
! caution	- When installing the drive inside an enclosed cabinet, use cooling fan or air conditioner to keep air inlet temperature below $50^{\circ} \mathrm{C}$. Failure to comply may result in overheating or a fire. - Cover the top of the drive with a temporary cloth or paper during installation so as to prevent foreign matter such as metal shavings, oil and water from falling into the drive. After installation is completed, remove the temporary cloth or paper. - Follow proper ESD procedures when operating the AC drive. Failure to comply will damage the drive because of static electricity . - Operating the motor at low speed lowers the cooling effect and increases the motor temperature, which, unless the output torque is significantly reduced, may result in damage to the motor. If the required motor speed range differs from that of the motor manufacturer, please contact them for advice. - If the torque characteristic is different with drive operation compared with operation from a commercial power supply, please check the load torque characteristic of the connected machine. - Pay attention to the load torque characteristic when selecting the drive capacity. In addition, when there is a long distance between the motor and drive, use a cable with a large cross sectional area to connect between the motor and the drive to prevent motor torque reduction - Do not lift the AC drive while the front cover is removed. Failure to comply may result in damage to PCB and terminal block.

When using the drive to drive asynchronous motor, a variety of electrical devices must be installed on both input and output sides to ensure system safety and stability.

How to configure the drive AC drive (three-phase 380 to $480 \mathrm{~V}, 18.5 \mathrm{~kW}$ and above) to operate with the peripheral devices is shown as below:

Description of Peripheral Electrical Devices

Device	Mounting Location	Function Description
Breaker	Power input side	MCCB: Cut off power supply when overcurrent occurs on downstream devices
		Leakage breaker: Provide protection against potentially leakage current during drive running to prevent electric shock and even a fire.
Fuse	AC drive input side	Provide protection in case of short circuit.
Contactor	Between breaker and AC drive input side	Do not start/stop the AC drive frequently by switching contactor ON/OFF (time interval is at least one hour) nor use it to directly start the AC drive.
AC reactor	AC drive input side	Improve power factor of power input side. Eliminate higher harmonics of the input side effectively and prevent other devices from being damaged due to distortion of voltage waveform. Eliminate input current unbalance due to inter-phase unbalance.
EMC filter	AC drive input side	Reduce external conduction and radiation interference of the AC drive. Decrease conduction interference flowing from power supply to the AC drive and improve the antierference capacity of the AC drive.
DC reactor	Between EMC filter and braking resistor	It is standard configuration for the drive of 30 kW and above and optional for the drive of 18.5 to 22 kW . Improve power factor of the input side. Improve efficiency and thermal stability of the AC drive. Eliminate impact of higher harmonics of the AC drive input side and reduce external conduction and radiation interference.
Braking resistor	-	Use braking resistor for the GB-type model of 75 kW and below. Dissipate regenerative energy during motor deceleration.
Braking unit	-	Use braking unit MDBUN of Inovance and recommended braking resistor for G-type model of 90 kW and above. Dissipate regenerative energy during motor deceleration
Output reactor	Between AC drive output side and the motor, close to the AC drive	Output side of AC drive generally has much higher harmonics. When motor is far from AC drive, there is much distributed capacitance in the circuit and certain harmonics may cause resonance in the circuit, which will: Degrade motor insulation performance and damage motor in long run. Generate large leakage current and cause frequent AC drive protection trips. If distance between AC drive and motor is greater than 100 m , install an AC output reactor.
$\mathrm{dv} / \mathrm{dt}$ reactor	AC drive output side, close to the AC drive	Protect motor insulation and reduce bearing current.
Output magnetic loop	AC drive output side, close to the AC drive	Reduce bearing current.
Motor	AC drive output side	Select an appropriate motor.

Note

- Do not install capacitor or surge suppressor on output side of the AC drive. Otherwise, it may damage the AC drive.
- Inputs/Outputs (main circuit) of the AC drive contain harmonics, which may interfere with communication device connected to the AC drive. Therefore, install an antierference filter to minimize interference.

8.1 MCCB, Fuse and Contactor

GT600 Model	Fuse Bussmann (Pass UL Certification)		Contactor Specification	MCCB Specification
	Rated Current (A)	Model	Rated Current (A)	Rated Current (A)
Three-phase 380 to 480 V, 50/60 Hz	FWH-80B	65	80	
GT600-4T18.5GB	80	FWH-100B	65	80
GT600-4T22GB	100	FWH-100B	65	80
GT600-4T30GB	100	FWH-125B	80	100
GT600-4T37GB	125	FWH-150B	95	160
GT600-4T45GB	150	FWH-200B	115	160
GT600-4T55GB	200	FWH-250A	150	250
GT600-4T75GB	250	FWH-275A	170	250
GT600-4T90G	275	FWH-325A	205	400
GT600-4T110G	325	FWH-400A	245	400
GT600-4T132G	400	FWH-500A	300	400
GT600-4T160G	500	FWH-600A	410	500
GT600-4T200G(-L)	600	FWH-700A	410	630
GT600-4T220G(-L)	700	FWH-800A	475	630
GT600-4T250G(-L)	800	FWH-800A	620	700
GT600-4T280G(-L)	800	$170 M 5016$	620	800
GT600-4T315G(-L)	1000	$170 M 5016$	620	800
GT600-4T355G(-L)	1000	$170 M 6017$	800	1000
GT600-4T400G(-L)	1250	$170 M 6017$	800	1000
GT600-4T450G(-L)	1250			

8.2 Braking Unit and Braking Resistor

- Selection of Resistance of Braking Resistor

The AC drive transfers regenerative energy generated during braking of motor to external braking resistor.
According to formula $U \times U / R=\mathrm{Pb}$:

- U refers to braking voltage at system stable braking.
- U value varies with the system. The 400 VAC power system usually selects 700 V braking voltage.
- Pb refers to braking power.
- Selection of Power of Braking Resistor

In theory, power of braking resistor is the same as braking power. But in consideration of derating, power of braking resistor is calculated from the following formula:
$\mathrm{K} \times \mathrm{Pr}=\mathrm{Pb} \times \mathrm{D}$

- K ranges from 15% to 30%.
- Pr refers to power of braking resistor.
- D refers to braking frequency (percentage of regenerative process to whole deceleration).

The following two formulas can be obtained:
$\mathrm{K} \times \mathrm{Pr}=\mathrm{Pb} \times \mathrm{D}=(\mathrm{U} \times \mathrm{U}) /(\mathrm{R} \times \mathrm{D})$
$\operatorname{Pr}=(U \times U \times D) /(R \times K)$
The user can calculate braking resistor power. K is derating coefficient of braking resistor. Low K value can ensure that braking resistor does not get overheated. The K value can be increased appropriately on the condition of good dissipation and should not exceed 30%. Failure to comply may result in a fire due to overheating of braking resistor.

Braking frequency (D) is determined by application. Typical values of braking frequency in different applications are listed in the following table.

Application	Elevator	 unwinding	Centrifuge	Occasional braking load	General Application
Braking Frequency	20% to 30%	20% to 30%	50% to 60%	5%	10%

Selection Guidance

AC Drive Model	Applicable Motor (kW)	Braking Unit		125\% Braking Torque (10\% ED, Max. 10s) Braking Resistor		Remark	Min. Resistance of Braking Resistor (Ω)
		Model	QTY	Specification	QTY		
GT600-4T18.5GB	18.5	Built-in		$4000 \mathrm{~W}, 32 \Omega$	1	AC drive model ending with letter "B"	24
GT600-4T22GB	22			$4500 \mathrm{~W}, 27 \Omega$	1		24
GT600-4T30GB	30			$6000 \mathrm{~W}, 20 \Omega$	1		19.2
GT600-4T37GB	37			$7000 \mathrm{~W}, 16 \Omega$	1		14.8
GT600-4T45GB	45			$9000 \mathrm{~W}, 13 \Omega$	1		12.8
GT600-4T55GB	55			$11000 \mathrm{~W}, 10.5 \Omega$	1		9.6
GT600-4T75GB	75			$15000 \mathrm{~W}, 7.7 \Omega$	1		6.8

AC Drive Model	Applicable Motor (kW)	Braking Unit		$\begin{gathered} \hline \begin{array}{c} 125 \% \text { Braking Torque } \\ (10 \% \text { ED, Max. 10s) } \end{array} \\ \hline \text { Braking Resistor } \end{gathered}$		Remark	Min. Resistance of Braking Resistor (Ω)
		Model	QTY	Specification	QTY		
GT600-4T90G	90	MDBUN-60-T	2	$9000 \mathrm{~W}, 10.0 \Omega$	2	Input voltage \leq 440 VAC	9.3×2
	90	MDBUN-60-5T	2	$9000 \mathrm{~W}, 12.8$ ת	2	Input voltage > 440 VAC	10.5×2
GT600-4T110G	110	MDBUN-60-T	2	$11000 \mathrm{~W}, 9.4 \Omega$	2	Input voltage \leq 440 VAC	9.3×2
	110	MDBUN-60-5T	2	$11000 \mathrm{~W}, 10.5 \Omega$	2	Input voltage > 440 VAC	10.5×2
GT600-4T132G	132	MDBUN-90-T	2	$13000 \mathrm{~W}, 6.8 \Omega$	2	Input voltage \leq 440 VAC	6.2×2
	132	MDBUN-90-5T	2	$13000 \mathrm{~W}, 8.8 \Omega$	2	Input voltage > 440 VAC	7.0×2
GT600-4T160G	160	MDBUN-90-T	2	$16000 \mathrm{~W}, 6.3 \Omega$	2	Input voltage \leq 440 VAC	6.2×2
GT600-4T160G	160	MDBUN-90-5T	2	$16000 \mathrm{~W}, 7.2 \Omega$	2	Input voltage > 440 VAC	7.0×2
GT600-4T200G(- L)	200	MDBU-200-B	2	$19000 \mathrm{~W}, 4.5 \Omega$	2	Input voltage \leq 440 VAC	2.5×2
	200	MDBU-200-C	2	$19000 \mathrm{~W}, 5.8 \Omega$	2	Input voltage > 440 VAC	3.0×2
GT600-4T220G(- L)	220	MDBU-200-B	2	21000 W, 4.1 ת	2	Input voltage \leq 440 VAC	2.5×2
	220	MDBU-200-C	2	$21000 \mathrm{~W}, 5.3 \Omega$	2	Input voltage > 440 VAC	3.0×2
GT600-4T250G(- L)	250	MDBU-200-B	2	$24000 \mathrm{~W}, 3.6 \Omega$	2	Input voltage \leq 440 VAC	2.5×2
	250	MDBU-200-C	2	$24000 \mathrm{~W}, 4.6 \Omega$	2	Input voltage > 440 VAC	3.0×2
GT600-4T280G(- L)	280	MDBU-200-B	2	$27000 \mathrm{~W}, 3.2 \Omega$	2	Input voltage \leq 440 VAC	2.5×2
	280	MDBU-200-C	2	$27000 \mathrm{~W}, 4.1$ ת	2	Input voltage > 440 VAC	3.0×2
GT600-4T315G(- L)	315	MDBU-200-B	3	$20000 \mathrm{~W}, 4.3 \Omega$	3	Input voltage \leq 440 VAC	2.5×3
	315	MDBU-200-C	3	$20000 \mathrm{~W}, 5.5 \Omega$	3	Input voltage > 440 VAC	3.0×3
GT600-4T355G(- L)	355	MDBU-200-B	3	$23000 \mathrm{~W}, 3.8 \Omega$	3	Input voltage \leq 440 VAC	2.5×3
	355	MDBU-200-C	3	$23000 \mathrm{~W}, 4.9 \Omega$	3	Input voltage > 440 VAC	3.0×3
GT600-4T400G(- L)	400	MDBU-200-B	3	$26000 \mathrm{~W}, 3.4 \Omega$	3	Input voltage \leq 440 VAC	2.5×3
	400	MDBU-200-C	3	$26000 \mathrm{~W}, 4.3 \Omega$	3	Input voltage > 440 VAC	3.0×3
GT600-4T450G(- L)	450	MDBU-200-B	3	$29000 \mathrm{~W}, 3.0 \Omega$	3	Input voltage \leq 440 VAC	2.5×3
	450	MDBU-200-C	3	$29000 \mathrm{~W}, 3.9 \Omega$	3	Input voltage > 440 VAC	3.0×3

| Note | - Minimum resistance supports operating condition with ED of 10% and longest
 time for single braking of 10 s . |
| :---: | :--- | :--- |
| | Default initial braking voltage is 760 V.
 The preceding table is for a reference only. You can select resistance and power
 of braking resistor based on actual needs. Resistance must not be lower than
 the reference value. Power may be higher than the reference value. Selection of
 braking resistor model is determined by generation power of motor and is also
 related to system inertia, deceleration time and potential energy load. For systems
 with high inertia, and/or short deceleration time, and/or frequent braking, select a
 braking resistor with higher power and lower resistance value. |

Mounting Dimensions of MDBUN Series Braking Unit

Unit: mm

Always mount MDBUN series braking unit in an upright position.

For use and installation of MDBUN series braking unit, refer to the MDBUN Series Braking Unit User guide.

Mounting Dimensions of MDBU Series Braking Unit

For use and installation of MDBU series braking unit, refer to the MDBU Series Braking Unit User guide.

Mounting Dimensions of the AFE Unit

The AC drive of K\&R can be configured with the AFE unit, which can feedback energy produced during motor braking to the grid, saving braking unit and braking resistor can reducing heating pollution on surrounding environment.
The AFE unit has advantages of energy saving, low noise, low harmonics pollution and high power factor.

AFE Model	Weight (kg)						
	H	W	D	A	B	Φ	
GT051T5.5G	305	190	163	130	290	7.0	7.2
GT051T7.5G	305	190	163	130	290	7.0	7.2
GT051T11G	305	190	163	130	290	7.0	7.2
GT051T15G	425	215	174	160	410	7.0	13.2
GT051T18.5G	425	215	174	160	410	7.0	13.2
GT051T22G	490	260	200	160	475	7.0	19.6
GT051T30G	490	260	200	160	475	7.0	21.3

8.3 External Operating Panel

The GT32NKE1 is the external operating panel applicable to the drive. It adopts the LED display and has the same operation mode as the operating panel on the drive. For details, refer to Chapter 4 Operating Panel (Keypad \& Display).

The following figures show the physical appearance and mounting dimensions of the GT32NKE1.

- Connecting Cable

K\&R provides GTCAB-GT (3 meters) and GTCAB2-GT (1.5 meters) for the user to connect external operating panel. The users can prepare connecting cable by themselves.

Note Once external operating panel is connected, the inbuilt operating panel becomes invalid.

8.4 Extension Cards

The drive can implement field bus by connecting various extension cares. It supports different types of encoders and user programming function. This chapter describes installation and use of these extension cards. For more details, refer to the user guide that is delivered together with product.

The following figure shows the mounting positions of these extension cards.

The following table lists the extension cards that are available for use with the drive.

Name	Model	Function	Frequency Dividing Coefficient	Remark
I/O extension card 1	MD38IO1	Provides the following: - Five extra DI terminals. - An analog input. - A relay output. - A digital output. - An analog output. Supports Modbus-RTU and CANlink	-	Available for all models
I/O extension card 2	MD38IO2	Provides three extra DI terminals.	-	Available for all models.
User programmable card	MD38PC1	User-programmable extension card, completely compatible with the Inovance H1U series PLC.	-	Available for all models.
CANlink communication card	MD38CAN1	Supports CANlink	-	Available for all models.
CANopen communication card	MD38CAN2	Supports CANopen	-	Available for all models.
Modbus communication card	MD38TX1	Supports Modbus-RTU		Available for all models.
Profibus-DP communication card	MD38DP2	Supports PROFIBUS-DP		Available for all models.
Resolver interface card	MD38PG4	For use with a resolver that has an excitation frequency of 10 kHz . The card has a DB9 interface.	Without frequency dividing function	Available for all models.
Open-collector encoder interface card	MD38PG5D	Open-collector encoder interface card with optional multiplying frequency division output. Requires a 15 VDC power supply.	2 to 62 even frequency dividing	Available for all models.
Differential encoder interface card	MD38PG6	Requires a 5 VDC power supply. The card has a DB9 interface.	1:1 frequency dividing	Available for all models.
Differential encoder interface card	MD38PG6D	With optional multiplying frequency division output. Requires a 5 VDC power supply. The card has a DB9 interface.	2 to 62 even frequency dividing	Available for all models.
Multifunctional encoder card	MD38PGMD	Compatible of differential input, opencollector input, push-pull input Supports differential output and opencollector output	0 to 63 frequency dividing	Available for all models.

8.4.1 Functional Extension Cards

- Extension I/O Card (GT60IO1)

GT60IO1 is developed by K\&R and is designed for extension of input and output terminals of the drive. It has five digital input (DI) terminals, an analog input (AI) terminal, a relay output terminal, a digital output (DO) terminal and an analog output (AO) terminal. It also has the RS485 communication interface and CAN communication interface.

Table 8-1 Terminal descriptions of GT60IO1

Type	Terminal	Terminal Name	Function Description			
Power supply	+24 V -COM	External +24 V power supply	Provide +24 V power supply to an external unit. Generally used to supply DI/DO terminals and external sensors. Max. output current: 170 mA			
	OP1	Digital input power terminal	Connect to +24 V by the jumper J8 by default. When applying an external power supply, remove the jumper J8 to disconnect the OP1 from +24V and connect the OP1 to the external power supply.			
Analog input	AI3-PGND	Analog input 3	Optically-coupled isolation input, supporting differential voltage input and temperature detection resistance input Input voltage range: -10 to 10 VDC			
Connect the PT100 or PT1000 temperature						
sensor				$	$	Input mode determined by DIP switch
:---						
S1, multiple functions not supported						
simultaneously						

Type	Terminal	Terminal Name	Function Description
Digital inputs	DI6-OP1	Digital input 6	Optically-coupled isolation compatible with dual-polarity inputs Input resistance: $2.4 \mathrm{k} \Omega$ Voltage range for inputs: 9 to 30 V
	DI7-OP1	Digital input 7	
	DI8-OP1	Digital input 8	
	DI9-OP1	Digital input 9	
	DI10-OP1	Digital input 10	
Analog output	AO2-GND	Analog output 2	Output voltage range: 0 to 10 V Output current range: 0 to 20 mA Output current with resistance range: 0 to 500Ω
Digital output	DO2-CME	Digital output 2	Optically-coupled isolation, dual-polarity open-collector output Output voltage range: 0 to 24 V Output current range: 0 to 50 mA Note that CME1 and COM are internally insulated, but are shorted by jumper J7 internally. Remove the jumper if you need to apply an external power to DO2.
Relay outputs (RELAY2)	PA- PB	Normallyclosed (NC) terminal	Contact driving capacity: 250 VAC, 3 A, $\operatorname{Cos} f=0.4$
	PA- PC	Normallyclosed (NC) terminal	
RS485 communication	$\begin{aligned} & \text { 485+/485-/ } \\ & \text { COM } \end{aligned}$	Communication interface	Modbus-RTU communication input and output terminal, isolated input
CAN communication	$\begin{aligned} & \text { CANH/ } \\ & \text { CANL/COM } \end{aligned}$	Communication interface	CANlink communication input terminal, isolated input

Note

RS485 communication terminals 485+/485-/COM and CANlink communication terminals CANH/CANL/COM are completely independent and can be used simultaneously.

Table 8-2 Jumper descriptions of GT60IO1

- Setting of jumpers takes top view with main terminals at the bottom of the card as visual angle. Jumpers are silk-screened on the card.
- When using CANlink or Modbus protocol for communication, match terminal resistor to the end AC drives by setting jumpers J4 or S2. The J 4 or S 2 of the middle AC drives must keep default state. If J 4 or S 2 is set improperly, instable communication or communication failure will be caused and Err16 or Err55 will be detected.
- Extension Mini I/O Card (GT60IO2)

GT60IO2 is simplified version of GT601O1 and provides three DI terminals.

Table 8-3 Terminal descriptions of the GT60IO2

Type	Terminal	Terminal Name	Function Description
Power supply	+24V-COM	External +24V power supply	Provide +24 V power supply to an external unit. Generally used to supply DI/DO terminals and external sensors. Max. output current: 170 mA
	OP2	Digital input power terminal	It is not connected to power supply by default. It can be connected either to external power or +24 V according to the actual need.
Digital inputs	DI6-OP2	Digital input 6	Optically-coupled isolation compatible with dualpolarity inputs Input resistance: $3.3 \mathrm{k} \Omega$ for DI6 and DI7, $2.4 \mathrm{k} \Omega$ for DI8 Voltage range for inputs: 9 to 30 V DI6, DI7 and DI8 are common input terminals with input frequency $<100 \mathrm{~Hz}$.
	DI7-OP2	Digital input 7	
	DI8-OP2	Digital input 8	

Table 8-4 Jumper descriptions of the GT60IO2

Jumper	Description	Meaning	Setting
J2	OP2 connecting mode selection	If DI connected in SINK mode, OP2 connected to +24V	-
		If DI connected in SOURCE mode, OP2 connected to COM	\square

Note

Setting of jumpers takes top view with main terminals at the bottom of the card as visual angle. Jumpers are silk-screened on the card.

- Extension PC Card (GT60PC1)

GT60PC1 card is designed with the PLC function, which enables the drive to have the PLC (user programmable) function. The card can read special variables of drive besides standard function codes and is more advantageous than combination of PLC and AC drive.

GT60PC1 is compatible with K\&R's PLC programming environment. On the condition that program capacity and peripheral devices do not exceed range of GT60PC1, programs of the user can be downloaded to GT60PC1 without modification.

GT60PC1 has the following I/O terminals and communication interface.

Table 8-5 Terminal descriptions of the GT60PC1

Type	Terminal	Terminal Name	Function Description
Power supply	+24 V -COM	External +24 V power supply	Provide +24 V power supply to an external unit. Generally used to supply DI/DO terminals and external sensors. Max. output current: 170 mA
	OP1	Digital input power terminal	Connect to +24V by the jumper J8 by default. When applying an external power supply, remove jumper J8 to disconnect OP1 from +24 V and connect OP1 to external power supply.

Type	Terminal	Terminal Name	Function Description
Analog input	AI3-PGND	Analog input 3	Optically-coupled isolation input, supporting differential voltage input, current input and temperature detection resistance input Input voltage range: -10 to 10 VDC Input current range: -20 to 20 mA Connect the PT100 or PT1000 temperature sensor Input mode determined by DIP switch S1, multiple functions not supported simultaneously
Digital inputs	DI6-OP1	Digital input 6	Optically-coupled isolation compatible with dual-polarity inputs Input resistance: $2.4 \mathrm{k} \Omega$ Voltage range for inputs: 9 to 30 V
	DI7-OP1	Digital input 7	
	DI8-OP1	Digital input 8	
	DI9-OP1	Digital input 9	
	DI10-OP1	Digital input 10	
Analog output	AO2-GND	Analog output 2	Output voltage range: 0 to 10 V Output current range: 0 to 20 mA
Relay outputs (RELAY x 2)	PA1-PC1	Relay 1 NO terminal	Contact driving capacity: 250 VAC, 3 A, $\operatorname{Cos} f=0.4$ 30 VDC, 1 A
	PA2- PC2	Relay 2 NO terminal	
RS485 communication	485+/485-	RS485 Communication interface	Modbus-RTU communication input and output terminal, isolated input
	CGND	RS485 communication isolation power ground	
RS422	CN1	User program downloading	User program downloading port

Table 8-6 Jumper descriptions of GT60PC1

Jumper	Description	Meaning	Setting
J2	Al3 input selection: voltage or current	Voltage	
		Current	

Jumper	Description	Meaning	Setting
J3	AO2 output or current or	Voltage	

8.4.2 Extension Communication Cards

- Extension CANlink Card (GT60CAN1)

GT60CAN1 is designed to connect the drive to high-speed CANlink bus. It complies with CANlink bus standard.

CANlink is based on CAN bus and developed by K\&R. It is an open communication protocol and equipments supporting this protocol can be connected to CANlink bus. Products of K\&R such as AC drive, servo drive, HMI and PLC cal be connected to CANlink bus seamlessly.

Table 8-7 Terminal descriptions of MDCAN1

Type	Terminal	Terminal Name	Function Description
CAN communication terminal	CANH	CAN positive input	Connect to positive pole of CAN bus.
	CANL	CAN negative input	Connect to negative pole of CAN bus.
	COM	Power ground	Connect to reference ground of all CAN nodes.

Table 8-8 Jumper descriptions of MDCAN1

Jumper	Description	Meaning	Setting
J2	CANlink terminal resistor matching selection	Matching the terminal resistor	
			Not matching the terminal resistor

Note	Setting of jumpers takes top view with main terminals at the bottom of the card as visual angle. Jumpers are silk-screened on the card.

- Use of CANlink bus

The CANlink bus topology is shown as follows:

It is recommended to use an STP cable as the CAN bus and use a twisted cable to connect CANH and CANL. Connect a matching terminal resistor of 120Ω respectively at both ends of the bus to prevent signal reflection. The CAN bus allows connection of a maximum of 64 nodes and the distance o 0.3 m . Connect the reference ground of all

1. Self-prepared single-core cable Run the twisted cable and cable

2. Multi-core twisted pair cable (non-shielded)
3. Multi-core STP cable

- CANlink Transmission Distance

The transmission distance of the CANlink bus is directly related to the baud rate and communication cable. The relationship between the maximum transmission distance of the CANlink bus and the baud rate is shown in the following table.

No.	Max. Transmission Distance	Baud Rate	Number of Nodes	Cable Diameter
1	25 m	1 Mbps	64	$0.205 \mathrm{~mm}^{2}$
2	95 m	500 kbps	64	$0.34 \mathrm{~mm}^{2}$
3	560 m	100 kbps	64	$0.5 \mathrm{~mm}^{2}$
4	1100 m	50 kbps	64	$0.75 \mathrm{~mm}^{2}$

- Extension CANopen Card (GT60CAN2)

GT60CAN2 is designed to connect the drive to high-speed CANopen bus. CANopen is an international field bus standard. Equipments supporting this protocol can be connected to the CANopen bus.

GT60CAN2 supports the following five protocols:

1. The Node Guard protocol, with which master can read equipment status
2. The Heartbeat protocol, with which slave detects current state to master regularly
3. The SDO that supports accelerated transmission mechanism only and transmits one function code (two bytes)
4. Three TPDOs and three RPDOs
5. Emergency object

Table 8-9 Terminal descriptions of MDCAN2

Type	Terminal	Terminal Name	Function Description
CAN communication terminal	CANH	CAN positive input	Connect to the positive pole of the CAN bus.
	CANL	CAN negative input	Connect to the negative pole of the CAN bus.
	COM	Power ground	Connect to the reference ground of all CAN nodes.

Table 8-10 Jumper descriptions of MDCAN2

Jumper	Description	Meaning	Setting
J2	CANopen terminal resistor matching selection	Matching the terminal resistor	$\boxed{\|r\|}$
		Not matching the terminal resistor	\square

Note

Setting of jumpers takes top view with main terminals at the bottom of the card as visual angle. Jumpers are silk-screened on the card.

- DIP switch setting

Table 8-11 Descriptions of DIP switch setting

Baud Rate		Definition	Address setting						Definition	DIP Switch		
1	2		3	4	5	6	7	8				
0	0	125 Kbps	0	0	0	0	0	0	Reserved			
			0	0	0	0	0	1	1			
0	1	250Kbps	0	0	0	0	1	0	2			
			0	0	0	0	1	1	3			
1	0	500 Kbps	...						\ldots			
			1	1	1	1	0	1	61			
1	1	1Mbps	1	1	1	1	1	0	62			
			1	1	1	1	1	1	63			

- Indicators

Table 8-12 Descriptions of indicators

Indicator	State	Description
PWR (in red)	ON	Power-on is normal.
	OFF	Power-on is abnormal. Check whether the installation is proper.
	ON	The communication of the AC drive times out.
	Flashing quickly	The CANopen address is set incorrectly.
	Flashing twice	The CANopen messages emergently.
RUN (in green)	ON	The CANopen enters the "Operational" state.
	Flashing	The CANopen enters the "Pre-Operational" state.
	OFF	The CANopen enters the "Stopped" state.

Note
CANopen has the same bus topology and wiring method as CANlink does.

- Extension RS485 Card (GT60TX1)

GT60TX1 is specially designed to provide the drive with RS485 communication function. It adopts isolation scheme and electrical parameters conform to international standard. It helps to implement control of drive running and parameter setting through remote serial interface.

Table 8-13 Terminal descriptions of GT60TX1

Type	Terminal	Terminal Name	Function Description
RS485 communication terminal	$485+$	RS485 positive input	RS485 communication terminal with isolation input
	$485-$	RS485 negative input	RS485 communication terminal with isolation input
	CGND	RS485 Power ground	Isolated power

Table 8-14 Jumper descriptions of GT60TX1

Jumper	Description	Meaning	Setting
J3	RS485 terminal resistor matching selection	Matching the terminal resistor	\bullet
		Not matching the terminal resistor	

Note
Setting of jumpers takes top view with main terminals at the bottom of the card as visual angle. Jumpers are silk-screened on the card.

- RS485 bus topology

The RS485 bus topology is shown as follows:

It is recommended to use an STP cable as the RS485 bus and use a twisted cable to connect 485+ and 485-. Connect a matching terminal resistor of 120Ω respectively at both ends of the bus to prevent signal reflection. The RS485 bus allows connection of a maximum of 128 nodes and the distance of each node branch must be smaller than 3 m . Connect the reference ground of all nodes together.

The connecting modes of multiple nodes are described as below:
Daisy chain connection mode

Branching connection mode

Note Distance from the bus to the node cannot exceed 3 m .

Star connection mode (prohibited)

Prohibited

- Terminal wiring
- Terminal wiring if node has CGND

GT60TX1 has three cables to connect 485+, 485- and CGND terminals respectively. Check that RS485 bus on site has these three cables and terminals are not connected reversely or wrongly.

If a shielded cable is used, shield must also be connected to CGND. Except CGND, prevent shield from touching anywhere of the drive including drive housing and grounding terminal.

Due to cable attenuation, if connection length is larger than 3 m , use AGW26 or a thicker cable. Always use a twisted pair cable to connect 485+ and 485respectively.

Non-shielded multi-core twisted pair cable and STP cable are recommended. If non-shielded multi-core twisted pair cable is used, take twisted pair to connect 485+ and 485- and twist the unused cables into one rope and connect it to CGND.

If an STP cable is used, connect twisted pair to 485+ and 485- respectively and shield to CGND. Shield can be connected to CGND only. It must not be connected to ground.

- Terminal wiring if node does not have CGND

For nodes without CGND, do not connect CGND cable or shield to PE of node directly.

Take the following steps to handle it.
Step 1: Check whether a common reference ground of 485 circuit exists on other ports of this node. If yes, connect CGND cable or shield to the pin.

Step 2: Check whether reference ground of 485 circuit exists on board of node. If yes, connect CGND cable or shield to it.

Step 3: If reference ground of 485 circuit is not found, keep CGND cable or shield unconnected and use an extra ground cable to connect this node to PE of other nodes.

- Transmission Distance

Maximum number of nodes and transmission distance of standard RS485 circuit vary with different baud rates, as listed in the following figure:

No.	Baud Rate	Max. Transmission Distance	Number of Nodes	Cable Diameter
1	115.2 Kbps	100 m	128	AWG $26\left(0.1 \mathrm{~mm}^{2}\right)$
2	19.2 Kbps	1000 m	128	AWG $26\left(0.1 \mathrm{~mm}^{2}\right)$

For details of the Modbus communication protocol, see 7.5 Modbus Communication Protocol.

■ Extension PROFIBUS-DP Card (GT60DP2)
GT60DP2, complying with international PROFIBUS field bus standard, is designed to connect the drive to PROFIBUS-DP bus. This card can improve communication efficiency and implement AC drive networking function. It enables the drive to be a slave in the bus, controller by the master.
Besides PROFIBUS-DP communication, GT60DP2 provides CANlink communication interface.

Table 8-15 Terminal descriptions of GT60DP2

Type	Terminal	Terminal Name	Function Description	Terminal Arrangement
PROFIBUS communication terminal (J2)	1, 2, 7, 9	NC	Vacant internally	
	3	Data line B	Data line positive	
	4	RTS	Request of sending signal	
	5	GND	Isolation 5 V power ground	
	6	+5V	Isolation 5 V power supply	
	8	Data line A	Data line negative	
CANlink communication terminals (J3, J9)	CANH	CAN positive input	Data line positive	-
	CANL	CAN negative input	Data line negative	
	GND	Power ground	Isolation 5 V power ground	

Table 8-16 Jumper descriptions of GT60DP2

Jumper	Description	Meaning	Setting
J6	CANlink terminal resistor matching selection	Matching the terminal resistor	
		Not matching the terminal resistor	

- DIP switch setting

Profibus-DP Communication Slave Address Setting								Slave Address	DIP Switch	
1	2	3	4	5	6	7	8			
Keep the OFF state (OFF: GT60DP2).	0	0	0	0	0	0	0	Reserved	S1	
	0	0	0	0	0	0	1	1		
	0	0	0	0	0	1	0	2		
		0	0	0	0	1	1	3		
		...						\ldots		
	1	1	1	1	1	0	1	123		
	1	1	1	1	1	1	0	124		
	1	1	1	1	1	1	1	125		

- Indicators

Indicator	Indication	State	Description
D4 in red	Power supply indicator	ON	The drive is powered on.
	OFF	The drive is not powered on or DP card is installed improperly.	
D3 in yellow	DP card and master communication indicator	ON	Communication between DP card and the master is normal.
	OFF	There is no communication between DP card and the master (check PROFIBUS cable connection and setting of station No.).	
	D2 in green	DP card and drive communication indicator	ON
	The master does not operate or error occurs on communication between DP card and the master .		
	Communication between DP card and the drive is normal.		
	Communication between DP card and the drive fails (check the baud rate setting).		

- PROFIBUS-DPbus topology

It is necessary to connect a matching terminal resistor to the end of PROFIBUS bus and set DIP switch properly. The system PEs must be reliably grounded.

Length of communication cable between GT60DP2 and PROFIBUS-DP master varies with different setting of baud rate of the master. Restrict communication cable lead length strictly according to the Siemens DB9 standard. The following table describes requirements on baud rate and communication cable lead length.

Baud Rate (Kbps)	Max. Length of Lead A (m)	Max. Length of Lead B (m)
9.6	1200	1200
19.2	1200	1200
187.5	600	600
500	200	200
1500	100	70
3000	100	Not supported
6000	100	
12000	100	

8.4.3 Extension PG Cards

Specifications of extension PG cards are as follows:

MD38PG5D Specification	
User interface	Oblique terminal block
Clearance	3.5 mm
Screw	Flathead
Pluggable	No
Cable specification	26 to 16 AWG $\left(0.1\right.$ to $\left.1.3 \mathrm{~mm}^{2}\right)$
Max. frequency	100 kHz
Frequency dividing coefficient	2 to 62 (even number)

MD38PGMD Specification	
User interface	Oblique terminal block
Clearance	3.5 mm
Screw	Flathead
Cable specification	26 to 16 AWG $(0.1$ to 1.3 mm ²
Max. frequency	Differential: 500 kHz Open-collector: 100 kHz
Frequency dividing coefficient	0 to 63
Encoder power supply	$5 \mathrm{~V} / 200 \mathrm{~mA}$, $15 \mathrm{~V} / 100 \mathrm{~mA}$
Encoder interface type	Differential, open- collector, push-pull
Frequency dividing interface type	Differential, open- collector

GT60PG6

MD38PG4 Specification	
User interface J3	DB9 female plug
Pluggable	Yes
Cable specification	26 to 21 AWG $\left(0.1\right.$ to $\left.0.4 \mathrm{~mm}^{2}\right)$
Resolution	12 -bit
Excitation frequency	10 kHz
Differential input limit	$\leq 7 \mathrm{~V}$
Frequency dividing	Without this function

MD38PG6 Specification	
User interface J3	DB9 female plug
Pluggable	Yes
Cable specification	26 to 21 AWG $\left(0.1\right.$ to $\left.0.4 \mathrm{~mm}^{2}\right)$
Max. frequency	500 kHz
Differential input limit	$\leq 7 \mathrm{~V}$
User interface J7, J8	Oblique terminal block
Clearance	3.5 mm
Screw	Flathead
Pluggable	No
Frequency dividing rate	500 kHz
Frequency dividing coefficient	$1: 1$

GT60PG6D

MD38PG6D Specification	
User interface J3	DB9 female plug
Pluggable	Yes
Cable specification	26 to 21 AWG $\left(0.1\right.$ to $\left.0.4 \mathrm{~mm}^{2}\right)$
Max. frequency	500 kHz
Differential input limit	$\leq 7 \mathrm{~V}$
User interface J7, J8	Oblique terminal block
Clearance	3.5 mm
Screw	Flathead
Pluggable	No
Frequency dividing rate	500 kHz
Frequency dividing coefficient	2 to 62 (even number)

- Extension PG Card (GT60PGMD)

Table 8-17 Terminal descriptions of GT60PGMD

Terminal		Function Description
CN2	A+	Encoder output signal A positive
	A-	Encoder output signal A negative
	B+	Encoder output signal B positive
	B-	Encoder output signal B negative
	Z+	Encoder output signal Z positive
	Z-	Encoder output signal Z negative
	5V/15V	Encoder 5V/15V power supply
	COM	Encoder power ground
	PE	Shield connecting point
J7	OA+	Differential frequency dividing output signal A positive
	OA-	Differential frequency dividing output signal A negative
	OB+	Differential frequency dividing output signal B positive
	OB-	Differential frequency dividing output signal B negative
	OZ+	Differential frequency dividing output signal Z positive
	OZ-	Differential frequency dividing output signal Z negative
	GND	Frequency dividing output reference ground
	OA	Open-collector frequency dividing output signal A
	OB	Open-collector frequency dividing output signal B
	OZ	Open-collector frequency dividing output signal Z
CN1	18-pin FFC interface, connecting to J4 on the control board of the AC drive	

- DIP Switch Setting

Filter Selection		Definition	Address Setting							Value	Frequency Dividing Coetticlent	DIP Switch	
8	7		6	5	4	3	2	1					
0	0	Non-selfadaptive filter	0	0	0	0	0	0	0	Reserved	No output	Low bits	High bits
0				00	0	01	11				Frequency divided by 1	- $=$ -	${ }^{\text {DIP }}$
0	1	Self- adaptive filter			0		02				Frequency divided by 2		
			0	0	0	0	1	1	13	3	Frequency divided by 3		
1	0	Fixed inter-lock		1 1 1 0 1 61 Frequency divided by 61									
1	1	Automatic inter-lock		1	1	1	1	0	0	62	Frequency divided by 62		
			1		1	1	1	1	1	63	Frequency divided by 63		

- Indicators

Indicator	Indication	State	Description
D1/D2/D3	Encoder input signal indicator	ON or flash	The encoder has signal input.
		OFF	The encoder does not have signal input.
D6	Power indicator	ON	Normal.
		OFF	Power is not connected.
LED1	Encoder input signal quality indicator	ON	Input signal is slightly instable, which occurs when motor accelerates/decelerates or encoder signal input suffers slight interference.
		OFF	Input signal is normal, speed is stable and there is no interference.
		Flash slowly	Input signal is moderately instable, which occurs when motor accelerates/decelerates or encoder signal input suffers moderate interference.
		Flash quickly	Input signal is seriously instable, which occurs when motor accelerates/decelerates quickly or encoder signal input suffers severe interference.
LED2	Signal processing quality indicator	ON	Signal is slightly instable, which occurs when motor accelerates/decelerates or interference during signal input is not completely filtered (The number of interference pulses that are not filtered is less than 10 per time unit).
		OFF	Signal processing is normal, speed is stable and there is no interference.
		Flash slowly	Signal is moderately instable, which occurs when motor accelerates/decelerates or interference during signal input is not completely filtered (The number of interference pulses that are not filtered is less than 30 per time unit).
		Flash quickly	Signal is seriously instable, which occurs when motor accelerates/decelerates or interference during signal input is not completely filtered (The number of interference pulses that are not filtered is more than 30 per time unit).
LED3	Inter-lock state indicator	ON	Inter-lock enabled.
		OFF	Inter-lock disabled.
LED4	System state indicator	ON	Normal.
		OFF	The system is not operating or abnormal.
		Flash	The encoder cable breaks.

Extension Resolver Card (GT60PG4)

Table 8-18 Terminal descriptions of GT60PG4

Terminal	Pin	Definition	Function Description	Pin Arrangement
CN2	1	EXC1	Resolver excitation negative	
	2	EXC	Resolver excitation positive	
	3	SIN	Resolver feedback SIN positive	
	4	SINLO	Resolver feedback SIN negative	
	5	COS	Resolver feedback COS positive	
	6, 7, 8	NC	Vacant internally	
	9	COSLO	Resolver feedback COS positive	
CN1	18-pin FFC interface, connecting to J4 on the control board of the AC drive			

- Indicators

Indicator State	GT60PG4 Fault State	Description
D5 (ON), D6 (ON)	Signal SIN/COS amplitude too small	Generally, DB9 is not connected or wrongly connected, or even wire breaks. If the preceding conditions do not occur, check whether the resolver matches GT60PG4.
D5 (ON), D6 (OFF)	Phase-lock loop unlocked	Phase lag of the resolver is very large.
D5 (OFF), D6 (ON)	Signal SIN/COS amplitude exceeding the upper limit	It is caused by interference. Ground the motor well and connect the ground point of the resolver card to PE of the drive.
D5 (OFF), D6 (OFF)	Normal	-

Wiring of GT60PG4 is shown as follows:

Note

- Selection of resolver must satisfy parameter setting requirement of MD38PG4. Especially excited input DC resistance must be larger than 17Ω (can be measured by multimeter). Otherwise, MD38PG4 cannot work normally.
- It is suggested to select a resolver with a maximum of four pole-pairs. Otherwise, MD38PG4 will be overloaded.
- Extension Open-collector PG Card (GT60PG5D)

Table 8-19 Terminal descriptions of GT60PG5D

Terminal		Function Description		
CN2	A	Encoder output signal A positive		
	B	Encoder output signal B positive		
	Z	Encoder output signal Z positive		
	15 V	Encoder 15V/100mA power supply		
	CCM	Power ground and frequency dividing output ground		
	COM	Power ground and frequency dividing output ground		
	A1	PG card frequency dividing output signal A (OC output, 0 to $24 \mathrm{~V}, 0$ to 50 mA)		
	B1	PG card frequency dividing output signal B (OC output, 0 to $24 \mathrm{~V}, 0$ to 50 mA)		
	PE	Shield connecting point		
$\begin{aligned} & \mathrm{CN} 3, \\ & \mathrm{CN} 4 \end{aligned}$		Supporting the "pulse + direction" function Pulse signal connected to phase A, direction signal connected to phase B	CN3	CN4
		Not supporting the "pulse + direction" function (default setting)	CN3	CN4
CN1	18-pin FFC interface, connecting to J 4 on the control board of the AC drive			

- DIP switch setting (GT60PG5D)

DIP Switch Setting					Value	Frequency Dividing Coefficient	DIP Switch
1	2	3	4	5			
0	0	0	0	0	0	No output	S1
0	0	0	0	1	1	No output	-
0	0	0	1	0	2	Frequency divided by 4	$\begin{array}{lllllll}1 & \mathbf{2} & \overline{3} & \frac{4}{4} & 5\end{array}$
0	0	0	1	1	3	Frequency divided by 6	$2 \begin{array}{llll}2 & 4 & 5\end{array}$
\ldots							\uparrow
1	1	1	1	1	31	Frequency divided by 62	Frequency dividing coefficient setting

Wiring of GT60PG5D is shown as follows:

- Extension Differential PG Card With Frequency Dividing (GT60PG6, GT60PG6D)

Table 8-20 Terminal descriptions of GT60PG6 and GT60PG6D

Terminal	Pin	Definition	Function Description	Pin Arrangement
J3	1	A+	Encoder output signal A positive	
	2	A-	Encoder output signal A negative	
	3	B+	Encoder output signal B positive	
	4	B-	Encoder output signal B negative	
	5	Z+	Encoder output signal Z positive	
	6	Null	Vacant internally	
	7	+5V	Encoder 5V power supply positive	
	8	COM	Encoder power supply negative	
	9	Z-	Encoder output signal Z negative	
J7, J8	OA+		Frequency dividing output signal A positive	
	OA-		Frequency dividing output signal A negative	
	OB+		Frequency dividing output signal B positive	
	OB-		Frequency dividing output signal B negative	
	OZ+		Frequency dividing output signal Z positive	
	OZ-		Frequency dividing output signal Z negative	
	COM		Signal power ground	
	PE		Shield connecting point	
CN1	18-pin FFC interface, connecting to J4 on the control board of the AC drive			

- DIP Switch Setting (GT60PG6D)

DIP Swich Setting					Value	Frequency Dividing Coefficient	DIP Switch
1	2	3	4	5			
0	0	0	0	0	0	No output	S1
0	0	0	0	1	1	No output	ON - -
0	0	0	1	0	2	Frequency divided by 4	
0	0	0	1	1	3	Frequency divided by 6	$2 \begin{array}{llll}2 & 3 & 4 & 5\end{array}$
\ldots							4
1	1	1	1	1	31	Frequency divided by 62	Frequency dividing coefficient setting

Wiring of GT60PG6/GT60PG6D is shown as follows:

Grounding Shield of Extension Encoder Card
On prerequisite that AC drive parameters are set properly, if PG card feedback speed or position is instable, it indicates that PG card suffers electromagnetic interference. In this case, connect shield of encoder signal lines to PE of the AC drive to restrain interference.

After installation of the PG card is done, PE of PG card is connected automatically. When connecting encoder, connect shield of signal lines to PE of PG card to complete the shield grounding.

To install PG card, remove screw in amplified position and align mounting holes of PG card to the four fixing pins and fix PG card with the prepared M3 $\times 8$ screws.

EMC Guidance

- Do not bundle encoder cable and power cables together. Failure to comply will result in encoder interference.
- Motor housing must be connected to PE of the AC drive. Meanwhile, connect grounding cable of motor to motor housing reliably. Failure to comply will result in poor grounding effect.
- An STP cable is suggested. For differential encoders, perform cable connection based on differential pairs properly and connect shield to PE of the AC drive.
- For large equipment applications where AC drive is far away from motor and motor cable is longer than 10 m , grounding effect is not good due to influence of cable inductance. In this case, encoder shield need not be connected to PE of AC drive.

8.5 Through-hole Mounting Bracket

Figure 8-1 Bracket dimensions and hole size of GT600-4T18.5GB to GT600-4T22GB (unit: mm)

Figure 8-2 Bracket dimensions and hole size of GT600-4T30GB to GT600-4T37GB (unit:mm)

Figure 8-3 Bracket dimensions and hole size of GT600-4T45GB to GT600-4T55GB (unit:mm)

Figure 8-4 Bracket dimensions and hole size of GT600-4T75GB to GT600-4T110G (unit:mm)

Figure 8-5 Bracket dimensions and hole size of GT600-4T132G to GT600-4T160G (unit: mm)

Figure 8-6 Bracket dimensions and hole size of GT600-4T200G(-L) to GT600-4T220G(-L) (unit: mm)

Figure 8-7 Bracket dimensions and hole size of GT600-4T250G(-L) to GT600-4T280G(-L) (unit:mm)

Figure 8-8 Bracket dimensions and hole size of GT600-4T315G(-L) to GT600-4T450G(-L) (unit:mm)

9.1 Daily Inspection .. 280
9.2 Periodic Inspection

282
9.3 Replacement of Wearing Components.. 284
9.4 Storage ... 288
9.5 Warranty Agreement.. 288

Chapter 9 Maintenance and Inspection

9.1 Daily Inspection

Safety Information	
4 warning	- Do not connect or disconnect wiring while the power is on. - Disconnect all power and wait for several minutes. Do not touch any terminals before the capacitors have fully discharged. - Do not modify or disconnect wiring, remove optional extension card or replace the cooling fan while the power is on. - Make sure to connect the motor-side grounding terminal. Failure to comply may result in electric shock due to touching motor housing. - Do not allow unqualified personnel to do the repair \& maintenance work. - Installation, wiring, commissioning, repair \& maintenance, and component replacement must be performed only by qualified technicians.
¢ caution	- Do not run the AC drive with front cover removed. - Drawings in the manual are sometimes shown without covers or protective guards. Remember to install the covers or protective guards as specified first, and then perform operations in accordance with instructions. - Tighten all terminal screws based on specified tightening torque. - Ensure that input voltage is within permissible range. Incorrect input voltage of main circuit may result in abnormal running. - Keep combustible materials far away from the AC drive or mount the AC drive on incombustible surfaces such as a metal wall. - Replace the cooling fan in correct ways as specified in this chapter. Ensure correct air outlet direction of the fan. Incorrect air direction will diminish the cooling effects. - Do not connect or disconnect motor while the drive is running. Failure to comply may result in electric shock and damage to the AC drive. - Use shielded cables for control circuit wiring. Meanwhile, ground the shield to the grounding terminal reliably. - Do not modify the drive circuitry. Failure to comply will damage the AC drive. - Make sure to connect the output terminals of the AC drive and the motor terminals correctly. - If it is necessary to change the motor rotation direction, exchange any two of UVW cables of the AC drive. - Do not operate the AC drive that has been damaged. This is to prevent further damage to external equipments.

Influence of ambient temperature, humidity, dust and vibration will cause aging of components in the AC drive, which may cause potential faults or reduce the product life. Therefore, it is necessary to carry out routine and periodic maintenance.

More frequent inspection will be required if it is used in harsh environments, such as:

- High ambient temperature
- Frequent starting and stopping
- Fluctuations in the AC power supply or load
- Excessive vibrations or shock loading
- Dust, metal dust, salt, sulfuric acid, chlorine atmospheres
- Poor storage conditions.

Check the following items daily to avoid deterioration in performance or product. Copy this checklist and sign the "checked" column after each inspection.

Inspection Item	Inspection Points	Solutions	Checked
Motor	Inspect whether abnormal oscillation or noise exists.	- Check mechanical connections. - Check power phases of the motor. - Tighten all loose screws.	
Fan	Inspect whether the cooling fan of the AC drive and the motor works abnormally.	- Check running of the drive-side cooling fan. - Check running of the motor-side cooling fan. - Check whether the cooling fan is clogged or dirty. - Check whether ambient temperature is within the permissible range.	
Installation environment	Inspect whether the cabinet and cable duct are abnormal.	- Check for input and output cables with insulation damaged. - Check for vibration of hanging bracket. - Check whether ground bars and terminals become loose or get corroded.	
Load	Inspect whether the drive output current exceeds the drive or motor rating for an extended period of time.	- Check for setting of motor parameters. - Check for excessive load. - Check for mechanical vibration ($<0.6 \mathrm{~g}$ on normal condition).	
Input voltage	Inspect whether the power voltage of the main and control circuits is within the allowed range.	- Adjust the input voltage to the permissible range. - Check whether start of heavy load exists.	

9.2 Periodic Inspection

9.2.1 Periodic Inspection Items

Always keep the AC drive clean. Clear away dusts especially metal powder on the surface of the AC drive, to prevent dust from entering the drive. Clear oil dirt from the cooling fan of the AC drive.

WARNING

- Do not perform inspection work while the power is on.
- Disconnect all power and wait for several minutes. Do not touch any terminal before the capacitors have fully discharged.

Check the following items every day to avoid deterioration in performance or product. Copy this checklist and sign the "checked" column after each inspection.

Inspection Item	Inspection Points	Solutions	Checked		
General	Inspect for wastes, dirt and dust on the surface of the AC drive.	Use a vacuum cleaner to suck up wastes and dust to prevent direct touching. Wipe surface dirt gently with a soft cloth immersed in neutral detergent.			
Cables	Inspect power cables and connections for discoloration. Inspect wiring insulation for aging or wear.	Replace cracked cable. Replace damaged terminals.			
Peripheral devices such as relay and contactor	Inspect contactors and relays for excessive noise during operation. Inspect coils for signs of overheating such as melted or cracked insulation.	Check whether the coil voltage is normal. Replace abnormal peripheral device.			
Ventilation	Inspect whether ventilation and heatsink are clogged. Check whether the fan is damaged.	Clean ventilation. Replace the fan.	Inspect for control components in poor contact. Inspect for loose terminal screws. Inspect for control cables with cracked insulation.		Clear away foreign matters on
:---					
the surface of control cables and					
Replace damaged or corroded					
control cables.	\quad				
:---					
Control circuit					

9.2.2 Insulation Test on Main Circuit

Note

- Before measuring insulation resistance with megameter (500 VDC megameter recommended), disconnect the main circuit from the AC drive.
- Do not conduct the dielectric strength test. High voltage (> 500 V) test need not be performed again because it has been completed before delivery.

Figure 9-1 Test insulation on the main circuit

The measured insulation resistance must be greater than $5 \mathrm{M} \Omega$.
Before test, remove the VDR screw, as shown in the following position.

9.3 Lifetime of Fans and Electrolytic DC Bus Capacitors

The lifetime of fans and electrolytic DC bus capacitors is related to the operating environment and maintenance status. Generally, the lifetime is shown as follows:

Component	Service Life	Possible Cause	Judging Criteria
Fan	≥ 5 years	- Bearing worn - Blade aging	- Whether there is crack on the blade - Whether there is abnormal vibration noise upon startup
Electrolytic DC bus capacitor	≥ 5 years	- Input power supply in poor quality - High ambient temperature - Frequent load jumping - Electrolytic aging	- Whether there is liquid leakage. - Whether the safe valve has projected. - Measure the static capacitance. - Measure the insulation resistance.

The standard service time indicates the service time when the AC drive is used on the following conditions:

- Ambient temperature: about $40^{\circ} \mathrm{C}$ on average yearly
- Load rate: below 80%
- Operating rate: below 24 hours per day

You can determine when to replace these parts according to the actual operating time.

- Number of Fans on the Drive

GT600 Model	Number of Fans
GT600-4T18.5GB	1
GT600-4T22GB	1
GT600-4T30GB	1
GT600-4T37GB	1
GT600-4T45GB	1
GT600-4T55GB	1
GT600-4T75GB	2
GT600-4T90G	2
GT600-4T110G	2
GT600-4T132G	2
GT600-4T160G	2
GT600-4T200G	2
GT600-4T220G	3
GT600-4T250G	3
GT600-4T280G	3
GT600-4T315G	3
GT600-4T355G	3
GT600-4T400G	
GT600-4T450G	2

- Removing and Installing the Fan of a Plastic Housing (GT600-4T18.5GB to GT600-4T37GB)

Removing and Installing the Fan of a Sheet Metal Housing (GT600-4T45GB to GT600-4T160G)

1. Disconnect the fan cable
from the drive
Installing
from the drive.
2. Align the mounting holes of the cooling fan, fan cover and the dren
3. Install the fan and fan cover on the AC drive.
4. Rem the drive.

- Removing and Installing the Fan of GT600-4T200G(-L) to GT600-4T450G(-L)

Removal

1. Disconnect the six screws and remove the front cover.
2. Disconnect the fan power cable connector from the drive. Each fan has a power cable connector.
3. Remove three screws from the fan box and draw the fan box out in the direction of arrow.
4. Loosen four screws from each fan cover and remove the fan.

Installing

1. Put the three fans into the fan box one by one and secure them by fixing the screws.
2. Align the fan box to the rail and push it into the drive.
3. Connect the fan power cable connectors and fix the three screws.
4. After replacement is completed, check that the air flow direction is upright.

- Replacement of Electrolytic Capacitor

If replacement of electrolytic capacitor is required, contact the agent or K\&R to perform complete drive replacement.

9.4 Storage

For storage of the AC drive, pay attention to the following three aspects:

- Pack the AC drive with original packing box provided by K\&R.
- Do not place the AC drive in an area of moisture ($95 \% \mathrm{H}$ or more) or high temperature (over $60^{\circ} \mathrm{C}$) or outdoors for long time.
- The electrolytic capacitor will deteriorate after being stored for a long time. Thus, the AC drive must be switched on and off once every 2 years, each time lasting at least 5 hours. Ensure to increase the input voltage gradually to rated value by using voltage regulator.

9.5 Warranty Agreement

1. Free warranty only applies to the AC drive itself.
2. $K \& R$ will provide 18 -month warranty from date of manufacturing for the failure or damage under normal use conditions. If the equipment has been used for over 18 months, reasonable repair expenses will be charged.

- Reasonable repair expenses will be charged for the damages due to the following causes:
- Improper operation without following the instructions
- Fire, flood or abnormal voltage.
- Using the AC drive for non-recommended function
- The maintenance fee is charged according to K\&R's uniform standard. If there is an agreement, the agreement prevails.
10.1 Safety Information 290
10.2 Troubleshooting During Trial Run 291
10.3 Fault Display 293
10.4 Resetting Fault 294
10.5 Faults and Diagnostics 295
10.6 Symptoms and Diagnostics 302

Chapter 10 Troubleshooting

10.1 Safety Information

Safety Information	
4 warning	- Do not disconnect the AC drive while power is on, and keep all breakers in OFF state. Failure to comply may result in electric shock.
CAUTION	- Make sure to ground the AC drive according to local laws and regulations. Failure to comply may result in electric shock or a fire. - Do not remove the front cover or touch internal circuit while the power is on. Failure to comply may result in electric shock. - Do not allow unqualified personnel to perform any maintenance, inspection or part replacement work. - When installing the drive inside an enclosed cabinet, use cooling fan or air conditioner to keep temperature below $50^{\circ} \mathrm{C}$. Failure to comply may result in overheating or even a fire. - Tighten all screws based on the specified tightening torque. Failure to comply may result in electric shock or a fire. - Always confirm input voltage is within nameplate rating. Failure to comply may result in electric shock or a fire. - Keep flammable and combustible materials away from the drive. - Cover the top of the drive with a temporary cloth or paper during installation so as to prevent foreign matter such as metal shavings, oil and water from falling into the drive. After the installation is completed, remove the temporary cloth or paper. - Follow proper electrostatic discharge (ESD) procedures when operating the AC drive. Failure to comply will damage internal circuit of the drive.

10.2 Troubleshooting During Trial Run

This section provides solutions to oscillation, poor torque or speed response, or other problems that occur while performing a trial run.

- Drive in Open-loop Vector Control (F0-01 = 0: Default value)

The AC drive implements control of the motor speed and torque without an encoder for speed feedback. In this control mode, motor auto-tuning is required to obtain the motor related parameters.

Problem	Solutions
Overload or overcurrent detected during motor start	1. Set motor parameters F1-01 to F1-05 according to motor nameplate. 2. Select a proper motor auto-tuning mode by setting F1-37 and perform motor auto-tuning. If possible, select dynamic auto-tuning (F1-37 = 2).
Poor torque or speed response and motor oscillation at speeds below 5 Hz	1. If motor torque and speed response are too slow, increase the setting of F2-00 (speed loop proportional gain 1) by 10 gradually or decrease the setting of F2-01 (speed loop integral time 1) by 0.05 gradually. 2. If motor oscillation occurs, decrease the setting of F2-00 and F2-01.
Poor torque or speed response and motor oscillation at speeds above 5 Hz	1. If motor torque and speed response are too slow, increase the setting of F2-03 (speed loop proportional gain 2) by 10 gradually or decrease the setting of F2-04 (speed loop integral time 4) by 0.05 gradually. 2. If motor oscillation occurs, decrease the setting of F2-03 and F2-04.
Low speed accuracy	If speed error when motor runs with load is large, increase the setting of F2-06 (vector control slip compensation gain) by 10\% gradually.
Obvious speed fluctuation	If motor speed fluctuation is large, increase the setting of F2-07 (SVC torque filter time) by 0.001s gradually.
Too loud motor noise	Increase the setting of F0-15 (carrier frequency) by 1.0 kHz gradually. Note that increase in carrier frequency will result in an increase in the leakage current of the motor.
Insufficient motor torque	Check whether torque upper limit is small. If yes, please: - Increase the setting of F2-10 (digital setting of torque upper limit in speed control mode) in the speed control mode.

- Drive in Feedback Vector Control (F0-01 = 1)

It is applicable to the application with an encoder for speed feedback. In this mode, you need to set the encoder pulses per revolution (F1-27), the encoder type (F1-28) and the encoder direction (F1-30) correctly.

Problem	Solutions
Overload or overcurrent fault detected during motor start	Set F1-27, F1-28 and F1-30 correctly.
Overload or overcurrent detected during motor running	1. Set motor parameters F1-01 to F1-05 according to the motor nameplate. 2. Select a proper motor auto-tuning mode by setting F1-37 and perform motor auto-tuning. If possible, select dynamic auto-tuning (F1-37 = 2).
Poor torque or speed response and motor oscillation at speeds below 5 Hz	1. If motor torque and speed response are too slow, increase the setting of F2-00 (speed loop proportional gain 1) by 10 gradually or decrease the setting of F2-01 (speed loop integral time 1) by 0.05 gradually 2. If motor oscillation occurs, decrease the setting of F2-00 and F2-01.
Poor torque or speed response and motor oscillation at speeds above 5 Hz	1. If motor torque and speed response are too slow, increase the setting of F2-03 (speed loop proportional gain 2) by 10 gradually or decrease the setting of F2-04 (speed loop integral time 4) by 0.05 gradually. 2. If motor oscillation occurs, decrease the setting of F2-03 and F2-04.
Low speed accuracy	If speed error when motor runs with load is large,, increase the setting of F2-06 (vector control slip compensation gain).
Obvious speed fluctuation	If motor speed fluctuation is large, increase the setting of F2-07 (SVC torque filter time) by 0.001s gradually.
Too loud motor noise	Increase the setting of F0-15 (carrier frequency) by1.0 kHz gradually. Note that increase in carrier frequency will result in an increase in the leakage current of the motor.
Insufficient motor torque	Check whether torque upper limit is small. If yes, please: - Increase the setting of F2-10 (digital setting of torque upper limit in speed control mode) in the speed control mode. - Increase the torque reference (A0-03) in the torque control mode.

- Drive in V/F Control (F0-01 = 2)

It is applicable to application without an encoder for speed feedback. You need to set rated motor voltage (F1-02) and rated motor frequency (F1-04) correctly.

Problem	Solutions
Motor oscillation during running	Increase the setting of F3-11 (V/F oscillation suppression gain) by 10 gradually. The permissible maximum setting here is 100 .
Overcurrent during start	Decrease the setting of F3-01 (torque boost) by 0.5% gradually.
Very large current during running	1. Set rated motor voltage (F1-02) and rated motor frequency (F1-04) correctly. 2. Decrease the setting of F3-01 (torque boost) by 0.5% gradually.
Too loud motor noise	Increase the setting of F0-15 (carrier frequency) by 1.0 kHz gradually. Note that increase in carrier frequency will result in an increase in the
leakage current of the motor.	

10.3 Fault Display

When a fault occurs during running, the AC drive stops output immediately, the fault indicator
 flashes, and contact of the fault relay acts. The operation panel displays the fault code such as Errㄹㄹ, as shown in the following figure.

10.4 Resetting Fault

Stage	Solution	Remark
After the fault occurs	Check operating panel for detailed information of recent three faults, such as fault type and frequency, current, bus voltage, DI/DO state, accumulative power-on time and accumulative running time at occurrence of the faults.	View these information via F9-14 to F9-44.
Before the fault is reset	Find and remove cause of the fault. Then follow steps below to reset the fault.	Troubleshoot the fault according to section 11.5 "Faults and Diagnostics".
Fault resetting method	Fault resetting through a DI terminal Allocate a DI terminal with function 9 "Fault reset (RESET)" by setting any of F4-00 to F4-09 to 9.	Fault resetting via operating panel Confirm that F7-02 = 1 (default value). Then press the

10.5 Faults and Diagnostics

Troubleshoot the fault according to the following table. If the fault cannot be eliminated, contact the agent or K\&R

Operating Panel Display	Fault Name
-2	Overcurrent during acceleration
Cause	Possible Solution
Ground fault or short circuit exists in the output circuit.	Check whether short-circuit occurs on the motor, motor cable or contactor.
Control mode is SVC or FVC but motor auto-tuning is not performed.	Set motor parameters according to motor nameplate and perform motor auto-tuning.
Acceleration time is too short.	Increase acceleration time.
The overcurrent stall prevention parameters are set improperly.	Ensure that current limit is enabled (F3-19 = 1). The setting of current limit level (F3-18) is too large. Adjust it between 120% and 150%. The setting of current limit gain (F3-20) is too small. Adjust it between 20 and 40 .
Customized torque boost or V/F curve is not appropriate.	Adjust the customized torque boost or V/F curve.
The spinning motor is started.	Enable the catching a spinning motor function or start the motor after it stops.
The AC drive suffers external interference.	View historical fault records. If the current value is far from the overcurrent level, find interference source. If external interference does not exist, it is the drive board or hall device problem.
Operating Panel Display	Fault Name
Erro3	Overcurrent during deceleration
Cause	Possible Solution
Ground fault or short circuit exists in the output circuit.	Check whether short-circuit occurs on the motor, motor cable or contactor.
Control mode is SVC or FVC but motor auto-tuning is not performed.	Set the motor parameters according to the motor nameplate and perform motor auto-tuning.
Acceleration time is too short.	Increase acceleration time.
The overcurrent stall prevention parameters are set improperly.	Ensure that current limit is enabled (F3-19 = 1). The setting of current limit level (F3-18) is too large. Adjust it between 120% and 150%. The setting of the current limit gain (F3-20) is too small. Adjust it between 20 and 40.
Braking unit and braking resistor are not installed.	Install braking unit and braking resistor.
The AC drive suffers external interference.	View historical fault records. If the current value is far from the overcurrent level, find interference source. If external interference does not exist, it is the drive board or hall device problem.

Operating Panel Display	Fault Name
Errou	Overcurrent at constant speed
Cause	Possible Solution
Ground fault or short circuit exists in the output circuit.	Check whether short-circuit occurs on the motor, motor cable or contactor.
Control mode is SVC or FVC but motor auto-tuning is not performed.	Set motor parameters according to motor nameplate and perform motor auto-tuning.
The overcurrent stall prevention parameters are set improperly.	Ensure that current limit is enabled (F3-19 = 1). The setting of current limit level (F3-18) is too large. Adjust it between 120% and 150%. The setting of current limit gain (F3-20) is too small. Adjust it between 20 and 40.
The AC drive power class is small.	If output current exceeds rated motor current or rated output current of the AC drive during stable running, replace a drive of larger power class.
The AC drive suffers external interference.	View historical fault records. If the current value is far from the overcurrent level, find interference source. If external interference does not exist, it is the drive board or hall device problem.
Operating Panel Display	Fault Name
Erras	Overvoltage during acceleration
Cause	Possible Solution
Input voltage is too high.	Adjust input voltage to normal range.
An external force drives motor during acceleration.	Cancel the external force or install a braking resistor.
The overvoltage stall prevention parameters are set improperly.	Ensure that the voltage limit function is enabled (F3-23 = 1). The setting of voltage limit (F3-22) is too large. Adjust it between 700 V and 770 V . The setting of frequency gain for voltage limit (F3-24) is too small. Adjust it between 30 and 50 .
Braking unit and braking resistor are not installed.	Install braking unit and braking resistor.
Acceleration time is too short.	Increase acceleration time.
Operating Panel Display	Fault Name
Errob	Overvoltage during deceleration
Cause	Possible Solution
The overvoltage stall prevention parameters are set improperly.	Ensure that the voltage limit function is enabled (F3-23 = 1). The setting of voltage limit (F3-22) is too large. Adjust it between 700 V and 770 V . The setting of frequency gain for voltage limit (F3-24) is too small. Adjust it between 30 and 50 .
An external force drives motor during deceleration.	Cancel the external force or install braking resistor.
Deceleration time is too short.	Increase deceleration time.
Braking unit and braking resistor are not installed.	Install braking unit and braking resistor.

Operating Panel Display	Fault Name
rent	Overvoltage at constant speed
Cause	Possible Solution
The overvoltage stall prevention parameters are set improperly.	Ensure that the voltage limit function is enabled ($\mathrm{F} 3-23=1$). The setting of voltage limit (F3-22) is too large. Adjust it between 700 V and 770 V . The setting of frequency gain for voltage limit (F3-24) is too small. Adjust it between 30 and 50 . The setting of frequency rise threshold during voltage limit (F326) is too small. Adjust it between 5 Hz and 20 Hz .
An external force drives motor during running.	Cancel the external force or install a braking resistor
Operating Panel Display	Fault Name
Err08	Pre-charge resistor fault
Cause	Possible Solution
Bus voltage fluctuates around undervoltage threshold continuously.	Contact the agent or K\&R.
Operating Panel Display	Fault Name
r 09	Undervoltage
Cause	Possible Solution
Instantaneous power failure occurs	Enable the power dip ride through function (F9-59 $=0$).
The AC drive's input voltage is not within the permissible range.	Adjust the voltage to normal range.
The bus voltage is abnormal.	Contact the agent or K\&R.
The rectifier bridge, the buffer resistor, the drive board or the control board are abnormal.	Contact the agent or K\&R.
Operating Panel Display	Fault Name
10	AC drive overload
Cause	Possible Solution
Load is too heavy or locked-rotor occurs on motor.	Reduce load or check motor and mechanical conditions.
The AC drive power class is small.	Replace a drive of larger power class.
Operating Panel Display	Fault Name
Erril	Motor overload
Cause	Possible Solution
F9-01 (Motor overload protection gain) is set improperly.	Set F9-01 correctly.
Load is too heavy or locked-rotor occurs on motor.	Reduce load or check motor and mechanical conditions.

Operating Panel Display	Fault Name
Erric	Input phase loss
Cause	Possible Solution
Input phase loss occurs.	Eliminate faults in external circuitry.
Drive board, lightning protection board, control board, or rectifier bridge is abnormal.	Contact the agent or Inovance.
Operating Panel Display	Fault Name
Errl3	Output phase loss
Cause	Possible Solution
Motor winding is damaged.	Check resistance between motor wires. Replace motor is winding is damaged.
The cable connecting the AC drive and the motor is abnormal.	Check for wiring errors and ensure the output cable is connected properly. Correct wiring.
The AC drive's three-phase outputs are unbalanced when the motor is running.	Check whether the motor three-phase winding is normal.
The drive board or the IGBT is abnormal.	Contact the agent or Inovance.
Operating Panel Display	Fault Name
Err 14	IGBT overheat
Cause	Possible Solution
The ambient temperature is too high.	Lower the ambient temperature.
The ventilation is clogged.	Clean the ventilation.
The fan is damaged.	Replace the cooling fan.
Thermally sensitive resistor of IGBT is damaged.	Replace the damaged thermally sensitive resistor.
The AC Drive IGBT is damaged.	Replace the AC Drive IGBT.
Operating Panel Display	Fault Name
Erris	External fault
Cause	Possible Solution
External fault signal is input via DI.	Confirm that the mechanical condition allows restart (F8-18) and reset the operation.
External fault signal is input via virtual I/O.	Confirm that the virtual I/O parameters in group A1 are set correctly and reset the operation.

Operating Panel Display	Fault Name
16	Communication fault
Cause	Possible Solution
Host computer is in abnormal state.	Check the cable of host computer.
Communication cable is abnormal.	Check the communication cables.
The serial port communication protocol (F0-28) of extension communication card is set improperly.	Set F0-28 of extension communication card correctly.
Communication parameters in group Fd are set improperly.	Set communication parameters in group Fd properly.
After all the preceding checkings are done but the fault still exists, restore the default settings.	
Operating Panel Display	Fault Name
Err 17	Contactor fault
Cause	Possible Solution
Drive board and power supply are abnormal.	Replace drive board or power supply board.
Contactor is abnormal.	Replace contactor.
The lightning protection board is abnormal.	Replace the lightning protection board.
Operating Panel Display	Fault Name
18	Current detection fault
Cause	Possible Solution
The hall is abnormal.	Replace the hall .
The drive board is abnormal.	Replace the drive board.
Operating Panel Display	Fault Name
19	Motor auto-tuning fault
Cause	Possible Solution
Motor parameters are not set according to nameplate.	Set motor parameters correctly according to nameplate.
Motor auto-tuning times out.	Check the cable connecting AC drive and motor.
The encoder is abnormal.	Check whether F1-27 (encoder pulses per revolution) is set correctly. Check whether signal lines of encoder are connected correctly and securely.
Operating Panel Display	Fault Name
Erren	Encoder fault
Cause	Possible Solution
Encoder is not matched.	Set the type of encoder correctly.
Encoder wiring is incorrect.	Check the PG card power supply and phase sequence.
Encoder is damaged.	Replace encoder.
PG card is abnormal.	Replace PG card.

Operating Panel Display	Fault Name
re I	EEPROM read-write fault
Cause	Possible Solution
The EEPROM chip is damaged.	Replace the main control board.
Operating Panel Display	Fault Name
Erre3	Short circuit to ground
Cause	Possible Solution
Motor is short circuited to the ground.	Replace cable or motor.
Operating Panel Display	Fault Name
Erreb	Accumulative running time reached
Cause	Possible Solution
Accumulative running time reaches the setting value.	Clear the record through parameter initialization.
Operating Panel Display	Fault Name
Erre?	User-defined fault 1
Cause	Possible Solution
User-defined fault 1 is input via DI.	Reset the operation.
User-defined fault 1 is input via virtual I/O.	Reset the operation.
Operating Panel Display	Fault Name
Erreg	User-defined fault 2
Cause	Possible Solution
User-defined fault 2 is input via DI.	Reset the operation.
User-defined fault 2 is input via virtual I/O.	Reset the operation.
Operating Panel Display	Fault Name
Errag	Accumulative power-on time reached
Cause	Possible Solution
Accumulative power-on time reaches the setting value.	Clear the record through parameter initialization.
Operating Panel Display	Fault Name
Err30	Load loss
Cause	Possible Solution
The output current of AC drive is smaller than F9-64 (load loss detection level).	Check whether load is disconnected or the setting of F9-64 and F9-65 (load lost detection time) satisfies actual running condition.
Operating Panel Display	Fault Name
r31	PID feedback lost during running
Cause	Possible Solution
PID feedback is smaller than the setting value of FA-26 (detection level of PID feedback loss).	Check PID feedback or set FA-26 properly.

Operating Panel Display	Operating Panel Display
Err 40	Pulse-by-pulse current limit fault
Cause	Cause
Load is too heavy or locked-rotor occurs on motor.	Reduce load or check motor and mechanical conditions.
The AC drive power class is small.	Replace a drive of larger power class.
Operating Panel Display	Fault Name
Err41	Motor switchover fault during running
Cause	Possible Solution
Motor switchover via terminal during drive running of the AC drive.	Perform motor switchover after the AC drive stops.
Operating Panel Display	Fault Name
Err42	Speed error
Cause	Possible Solution
Encoder parameters are set improperly.	Set encoder parameters properly.
Motor auto-tuning is not performed.	Perform motor auto-tuning.
F9-69 (detection level of speed error) and F9-70 (detection time of speed error) are set incorrectly.	Set F9-69 and F9-70 correctly based on actual condition.
Operating Panel Display	Fault Name
Err43	Motor overspeed
Cause	Possible Solution
Encoder parameters are set improperly.	Set encoder parameters properly.
Motor auto-tuning is not performed.	Perform motor auto-tuning.
F9-67 (Overspeed detection level) and F9-68 (Overspeed detection time) are set incorrectly.	Set F9-67 and F9-68 correctly based on the actual situation.
Operating Panel Display	Fault Name
Err45	Motor overtemperature.
Cause	Possible Solution
Cable connection of temperature sensor becomes loose	Check cable connection of temperature sensor.
The motor temperature is too high.	Decrease carrier frequency or take other measures to cool the motor.
Operating Panel Display	Fault Name
Errbi	Braking unit overload
Cause	Possible Solution
Resistance of braking resistor is too small.	Replace a braking resistor of larger resistance.
Operating Panel Display	Fault Name
Errbe	Short-circuit of braking circuit
Cause	Possible Solution
Braking IGBT is abnormal.	Contact the agent or Inovance.

10.6 Symptoms and Diagnostics

The following symptoms may occur during use of the AC drive. When these symptoms occur, perform simple analysis based on the following table.

Operating Panel Display	Fault Description
	There is no display while power-on.
Cause	Possible Solution
The mains voltage is not input or too low.	Check the power supply.
The switching power supply on drive board of the AC drive is faulty.	Check bus voltage. Check that the 24 V output and +10 V output on the control board are normal.
Wires between control board and drive board and between control board and operating panel break.	Re-connect the 8-pin wire and 40-pin wire.
Pre-charge resistor of the AC drive is damaged.	Contact the agent or K\&R.
Control board or operating panel is faulty.	
Rectifier bridge is damaged.	
Operating Panel Display	Fault Description
HL	"HC" is displayed while power-on.
Cause	Possible Solution
Wire between drive board and control board is in poor contact.	Re-connect the 8-pin wire and 28-pin wire.
Related components on control board are damaged	Contact the agent or K\&R.
The motor or motor cable is short circuited to ground.	
The hall is damaged.	
The mains voltage is too low.	
Operating Panel Display	Fault Description
Erre3	"Err23" is displayed at power-on.
Cause	Possible Solution
Motor or motor output cable is short circuited to ground.	Use a megger to measure insulation resistance of motor and motor cable.
The AC drive is damaged.	Contact the agent or K\&R.
Operating Panel Display	Fault Description
HL	The display is normal while power-on. But after running, "HC" is displayed and the drive stops immediately.
Cause	Possible Solution
The cooling fan is damaged or locked-rotor occurs.	Replace the fan.
Short circuit exists in wiring of control terminals.	Eliminate short circuit fault in control circuit wiring.
Operating Panel Display	Fault Description
Erril	Err14 (IGBT overheat) is detected frequently.
Cause	Possible Solution
The setting of carrier frequency is too high.	Reduce carrier frequency (F0-15).
The cooling fan is damaged, or ventilation is clogged.	Replace the fan or clean the ventilation.
Components inside the AC drive are damaged (thermistor or others).	Contact the agent or K\&R.

Operating Panel Display	Fault Description
-	The motor does not rotate after the AC drive runs.
Cause	Possible Solution
The wiring between the AC drive and motor is incorrect.	Check that wiring between AC drive and motor is normal.
Related AC drive and motor parameters are set improperly.	Restore the factory parameters and re-set the following parameters properly: Encoder parameters Motor ratings, such as rate motor frequency and rated motor speed Motor 1 control mode (F0-01) and command source selection (F0-02) F3-01 (torque boost) in V/F control under heavy-load start.
Cable connection between drive board and control board is in poor contact.	Re-connect wirings and ensure secure connection.
The drive board is faulty.	Contact the agent or K\&R.
Operating Panel Display	Fault Description
-	DI terminals are disabled.
Cause	Possible Solution
Related parameters are set incorrectly.	Check and set parameters in group F4 again.
External signals are incorrect.	Re-connect external signal cables.
Jumper across OP and +24 V becomes loose.	Re-confirm the jumper bar across OP and +24 V.
The control board is faulty.	Contact the agent or K\&R.
Operating Panel Display	Fault Description
-	Motor speed does not rise in FVC control.
Cause	Possible Solution
Encoder is faulty.	Replace encoder and re-confirm cable connection.
Encoder connection is incorrect or in poor contact.	Reconnect the encoder to ensure in good contact.
PG card is faulty.	Replace the PG card.
Drive board is faulty.	Contact the agent or K\&R.
Operating Panel Display	Fault Description
-	The AC drive detects overcurrent and overvoltage frequently.
Cause	Possible Solution
Motor parameters are set improperly.	Set motor parameters or perform motor auto-tuning again.
Acceleration/deceleration time is improper.	Set proper acceleration/deceleration time.
Load fluctuates.	Contact the agent or K\&R.
Operating Panel Display	Fault Description
Err 17	Err17 is detected upon power-on or running.
Cause	Possible Solution
The pre-charge relay or contactor is not closed.	Check whether the relay or contactor cable is loose.
	Check whether the relay or contactor is faulty.
	Check whether 24 V power supply of the contactor is faulty.
	Contact the agent or K\&R.

Appendix A Standards Compliance 306
A. 1 CE Certification 306
A. 2 UL Certification 329
Appendix B Parameter Table 330
B. 1 Introduction. 330
B. 2 Standard Parameters 331
B. 3 Monitoring Parameters 353

Appendix A Standards Compliance

A. 1 CE Certification

A.1.1 CE Mark

CE mark indicates compliance with European safety and environmental regulations. It is required for engaging in business and commerce in Europe.

European standards include the Machinery Directive for machine manufacturers, the Low Voltage Directive for electronics manufacturers, and EMC guidelines for controlling noise.
This drive is marked with CE mark based on the following EMC guidelines and the Low Voltage Directive.

- 2014/35/EU: Low Voltage Directive
- 2014/30/EU: Electromagnetic compatibility

Machines and devices used in combination with this drive must also be CE certified and marked. The integrator who integrates the drive with the CE mark in into other devices has the responsibility of ensuring compliance with CE standards and verifying that conditions meet European standards.

A.1.2 CE Low Voltage Directive Compliance

This drive has been tested according to IEC 61800-5-1: 2007, and it complies with the Low Voltage Directive completely.

To enable machines and devices integrating this drive to comply with the Low Voltage Directive, be sure to meet the following conditions:

- Mounting Location

Mount the AC drive in places with pollution not higher than severity 2 and overvoltage category 3 in accordance with IEC60664.

Installing Fuse on the Input Side
To prevent accidents caused by short circuit, install fuse on the input side and the fuse must comply with the UL standard.

Select the fuse according to the following figure.

GT600 Model	FWH Series Fuse	
	Manufacturer: Bussmann	
	Rated Current (A)	Model
GT600-4T18.5GB	80	FWH-80B
GT600-4T22GB	100	FWH-100B
GT600-4T30GB	100	FWH-100B
GT600-4T37GB	125	FWH-125B
GT600-4T45GB	150	FWH-150B
GT600-4T55GB	200	FWH-200B
GT600-4T75GB	250	FWH-250B
GT600-4T90G	275	FWH-275B
GT600-4T110G	325	FWH-325B
GT600-4T132G	400	FWH-400B
GT600-4T160G	500	FWH-500B
GT600-4T200G	600	FWH-600B
GT600-4T220G	700	FWH-700B
GT600-4T250G	800	FWH-800B
GT600-4T280G	800	FWH-800B
GT600-4T315G	1000	$170 M 5016$
GT600-4T355G	1000	$170 M 5016$
GT600-4T400G	1400	$170 M 6017$
GT600-4T450G	1400	$170 M 6017$

Preventing Entry of Foreign Objects
The drive units must be installed in a fireproof cabinet with doors that provide effective electrical and mechanical protection. The installation must conform to local and regional laws and regulations, and to relevant IEC requirements.

Grounding
If using an AC drive of the 400 V class, connect the neutral point of the drive power supply to ground.

A.1.4 EMC Guidelines Compliance

Electromagnetic compatibility (EMC) describes the ability of electronic and electrical devices or systems to work properly in the electromagnetic environment and not to generate electromagnetic interference that influences other local devices or systems.

In other words, EMC includes two aspects: The electromagnetic interference generated by a device or system must be restricted within a certain limit; the device or system must have sufficient immunity to the electromagnetic interference in the environment.

The drive satisfies the European EMC directive 2004/108/EC and the standard EN 61800-3: $2004+\mathrm{A} 1: 2012$ Category C2. The AC drives are applied to both the first environment and the second environment.

When applied in the first environment, the AC drive may generate radio interference. Besides the CE compliance described in this chapter, take measures to avoid the radio interference if required.

The integrator of the system installed with the AC drive is responsible for compliance of the system with the European EMC directive and standard EN 61800-3: 2004 +A1: 2012 Category C2, C3 or C4 according to the system application environment.

Definition of Terms

- First environment

Environment that includes domestic premises, it also includes establishments directly connected without intermediate transformers to a low-voltage power supply network which supplies buildings used for domestic purposes.

- Second environment

Environment that includes all establishments other than those directly connected to a lowvoltage power supply network which supplies buildings used for domestic purposes

- Category C1 AC drive

Power Drive System (PDS) of rated voltage less than 1000 V , intended for use in the first environment

- Category C2 AC drive

PDS of rated voltage less than 1000 V , which is neither a plug in device nor a movable device and, when used in the first environment, is intended to be installed and commissioned only by a professional person.

- Category C3 AC drive

PDS of rated voltage less than 1000 V , intended for use in the second environment and not intended for use in the first environment

- Category C4 AC drive

PDS of rated voltage equal to or above 1000 V , or rated current equal to or above 400 A , or intended for use in complex systems in the second environment

A.1.6 Selection of Peripheral EMC Devices

- AC Input Filter Installation

Note

Select a cable as short as possible to connect filter and drive. Cable length must be less than 30 cm . Make sure to connect filter and drive to the same grounding reference surface to implement reliable grounding of the filter. Otherwise, desired filtering effect will not be achieved.

- Standard EMC filter

This series filters satisfy the EN 61800-3 C2 emission requirement of CE certification. Connect filter to ground reliably and ensure that length of the cable connecting drive and filter is less than 30 cm .

- Physical appearance

Schaffner FN3258 series filter

Schaffner FN3359 series filter

Changzhou Jianli EBK5 series filter

- Selection

GT600 Model	Input AC Filter Model (Schaffner)	Input AC Filter Model (Changzhou Jianli)
GT600-4T18.5GB	FN 3258-55-34	DL-50EBK5
GT600-4T22GB	FN 3258-75-34	DL-65EBK5
GT600-4T30GB	FN 3258-75-34	DL-65EBK5
GT600-4T37GB	FN 3258-100-35	DL-80EBK5
GT600-4T45GB	FN 3258-100-35	DL-100EBK5
GT600-4T55GB	FN 3258-130-35	DL-130EBK5
GT600-4T75GB	FN 3258-180-40	DL-160EBK5
GT600-4T90G	FN 3258-180-40	DL-200EBK5
GT600-4T110G	FN 3270H-250-99	DL-250EBK5
GT600-4T132G	FN 3359-250-28	DL-300EBK3
GT600-4T160G	FN 3359-320-99	DL-400EBK3
GT600-4T200G(-L)	FN 3359-400-99	DL-400EBK3
GT600-4T220G(-L)	FN 3359-600-99	DL-600EBK3
GT600-4T250G(-L)	FN 3359-600-99	DL-600EBK3
GT600-4T280G(-L)	FN 3359-600-99	DL-600EBK3
GT600-4T315G(-L)	FN 3359-600-99	DL-600EBK3
GT600-4T355G(-L)	FN 3359-800-99	DL-700EBK3
GT600-4T400G(-L)	FN 3359-800-99	DL-800EBK3
GT600-4T450G(-L)	FN 3359-800-99	DL-800EBK3

- Mounting Dimensions

Dimensions of Schaffner FN 3258 series 50-180A filter

Rated Current (A)	A	B	C	D	E	F	G	H	I	J	K	L
7	190	40	70	160	180	20	4.5	1	22	M5	20	29.5
16	250	45	70	220	235	25	5.4	1	22	M5	22.5	29.5
30	270	50	85	240	255	30	5.4	1	25	M5	25	39.5
42	310	50	85	280	295	30	5.4	1	25	M6	25	37.5
55	250	85	90	220	235	60	5.4	1	39	M6	42.5	26.5
75	270	80	135	240	255	60	6.5	1.5	39	M6	40	70.5
100	270	90	150	240	255	65	6.5	1.5	45	M10	45	64
130	270	90	150	240	255	65	6.5	1.5	45	M10	45	64
180	380	120	170	350	365	102	6.5	1.5	51	M10	60	47

Dimensions of Schaffner FN 3270H series 150-2500A filter

150 to 250 A

Unit: mm

Dimensions of copper bar
320 to 1000 A

Dimensions	150A	180A	250A	320A	400A	600A	800A	1000A	1600A	2500A
	(mm)									
A	300	300	300	300	300	300	350	350	400	600
B	210	210	230	260	260	260	280	280	300	370
C	120	120	125	115	115	135	170	170	160	200
D	160	160	180	210	210	210	230	230	250	300
E	120	120	120	120	120	120	145	145	170	250
F	185	185	205	235	235	235	255	255	275	330
G	Ф12	Ф14								
H	2	2	2	2	2	2	3	3	3	3
1	33	33	33	43	43	43	53	53	93	98
J	M10	M10	M10	M12	M12	M12	M12	M12	M12	M16
K	55	55	62.5	20	20	20	25	25	25	25
L	30	30	35	20	20	20	25	25	25	25
M	420	420	420	440	440	440	510	510	-	-
N	171	171	191	221	221	221	241	241	-	-
0	127	127	132	122	122	142	177	177	-	-
S	-	-	-	-	-	-	-	-	26	35
T	-	-	-	-	-	-	-	-	26	35
U	50	50	55	60	60	60	60	60	60	100
V	-	-	-	25	25	25	40	40	60	70
W	-	-	-	6	6	8	8	8	10	15
X	-	-	-	15	15	15	20	20	17	20
Y	-	-	-	40	40	40	50	50	90	95
Z	-	-	-	Ф10.5	Ф10.5	Ф10.5	Ф14	Ф14	Ф14	Ф14

Dimensions of Jianli series 50-200A filter

Filter Model	A	B	C	D	E	F	G	H	1	J	K	M	N	P	L
	(mm)														
DL-25EBK5	243	224	265	58	70	102	25	92	M6	58	M4	74	49	M6	$\begin{aligned} & 6.4 x \\ & 9.4 \end{aligned}$
DL-35EBK5															
DL-50EBK5															
DL-65EBK5															
DL-80EBK5	354	323	388	66	155	188	30	92	M8	62	M4	86	56	M8	$\begin{aligned} & 6.4 x \\ & 9.4 \end{aligned}$
DL-100EBK5															
DL-130EBK5															
DL-160EBK5															
DL-200EBK5															

Dimensions of the Jianli series 250-800A filter

- Simple EMC Filter

A simple EMC filter is installed to prevent the surrounding interference and prevent the interference from the AC drive during running.
Connect the simple EMC filter to ground reliably and ensure that the length of the cable connecting the drive and the filter is less than 30 cm .

- Selection

GT600 Model	Simple EMC filter
GT600-4T18.5GB	DL65EB1/10
GT600-4T22GB	
GT600-4T30GB	
GT600-4T37GB	DL-180EB1/10
GT600-4T45GB	
GT600-4T55GB	
GT600-4T75GB	
GT600-4T90G to GT600-4T450G	

- Mounting Dimensions

Simple EMC Filter Model	Overall Dimensions (Length \times Width \times Height)	Mounting Dimensions $($ Mounting Length \times Mounting Width) (mm)
DL-15EB1/10	$157 \times 130 \times 50$	80×115
DL-35EB1/10	$218 \times 140 \times 80$	184×112
DL-65EB1/10	$218 \times 140 \times 80$	184×112
DL-120EB1/10	$334 \times 185 \times 90$	304×155
DL-180EB1/10	$388 \times 220 \times 100$	354×190

- Filter Capacitance Box and Ferrite Core

In some applications, connect filter capacitance box and wind a ferrite core to remove some interference during drive running.

Connect filter capacitance box to grounding terminal of the drive, and ground cable length cannot exceed 300 mm .

- Mounting dimensions of filter capacitance box

- Physical appearance of ferrite core

- Selection of ferrite core

Ferrite Core Model	SN	Dimensions (Outer Diameter \times Inner Diameter \times Thickness) (mm)
DY644020H	11013031	$64 \times 40 \times 20$
DY805020H	11013032	$80 \times 50 \times 20$
DY1207030H	11013033	$120 \times 70 \times 30$

- AC Input Reactor Installation
- AC Input Reactor Model

The AC input reactor is connected to suppress harmonic current on the input side. Install an AC reactor when the application has higher requirements on harmonic suppression.

The recommended AC reactor models are listed in the following table.

AC Drive Model	AC Input Reactor Model (K\&R)
GT600-4T18.5GB	MD-ACL-50-0.28-4T-2\%
GT600-4T22GB	MD-ACL-60-0.24-4T-2\%
GT600-4T30GB	MD-ACL-80-0.17-4T-2\%
GT600-4T37GB	MD-ACL-90-0.16-4T-2\%
GT600-4T45GB	MD-ACL-150-0.095-4T-2\%
GT600-4T55GB	MD-ACL-200-0.07-4T-2\%
GT600-4T75GB	MDD-ACL-250-0.056-4T-2\%
GT600-4T90G	MD-ACL-330-0.042-4T-2\%-0.056-4T-2\%
GT600-4T110G	MD-ACL-330-0.042-4T-2\%
GT600-4T132G	MD-ACL-490-0.028-4T-2\%
GT600-4T160G	MD-ACL-490-0.028-4T-2\%
GT600-4T200G(-L)	MD-ACL-660-0.021-4T-2\%
GT600-4T220G(-L)	MD-ACL-660-0.021-4T-2\%
GT600-4T250G(-L)	MD-ACL-800-0.017-4T-2\%
GT600-4T280G(-L)	MD-ACL-800-0.017-4T-2\%
GT600-4T315G(-L)	MD-ACL-1000-0.014-4T-2\%
GT600-4T355G(-L)	
GT600-4T400G(-L)	GT600-4T450G(-L)

- Designation rules

- Dimensions

Dimensions of $A C$ input reactor of 50 to 60 A are shown as below:

Rated Current	A	B	C	D	E	F	G	H	1	J	K	L
A	mm											
50	64	160	195	80 ± 10	75 ± 5	35 ± 5	135	120 ± 1	92 ± 2	Ф8.5 x 20	72 ± 2	Ф6.4
60	64	160	195	80 ± 10	75 ± 5	35 ± 5	135	120 ± 1	92 ± 2	Ф8.5 x 20	72 ± 2	Ф6.4

Dimensions of $A C$ reactor of 90 to 120 A are shown as below:

Rated Current	A	B	C	D	E	F	G	H	I	J	K	L	M
A	mm												
90	195	188 ± 1	160	-	-	-	150	120 ± 1	Ф8.5 x 20	72 ± 2	-	-	-
120	195	188 ± 1	160	78 ± 10	79 ± 5	40 ± 5	135	120 ± 1	Ф8.5 x 20	92 ± 2	20	Ф9	10

Dimensions of AC reactor of 150 to 330 A are shown as below:

Rated Current	A	B	C	D	E	F	G	H	I	J	K	L	M
A	mm												
150	250	81 ± 5	230	92 ± 10	145 ± 5	38 ± 5	155	182 ± 1	Ф11 x 18	76 ± 2	Ф11	13	25
200	250	81 ± 5	230	102 ± 10	145 ± 5	40 ± 5	175	182 ± 1	Ф11 x 18	96 ± 2	Ф11	13	25
250	250	81 ± 5	260	102 ± 10	160 ± 5	50 ± 5	175	182 ± 1	Ф11 $\times 18$	96 ± 2	Ф11	13	25
330	250	81 ± 5	275	107 ± 10	160 ± 5	60 ± 5	180	214 ± 1	Ф11 $\times 18$	100 ± 2	Ф12	15	30

Dimensions of $A C$ reactor of 490 to 660 A are shown as below:

Rated Current	A	B	C	D	E	F	G	H	I	J	K	L	M	N
A	mm													
490	320	106 ± 5	305	137 ± 10	198 ± 5	60 ± 5	220	243 ± 1	Ф12 x 20	122 ± 2	Ф12	22	50	23
660	320	106 ± 5	305	145 ± 10	203 ± 5	50 ± 5	240	243 ± 1	Ф12 x 20	137 ± 2	Ф12	22	50	23

Dimensions of AC reactor of 800 to 1000 A are shown as below:

Rated Current	A	B	C	D	E	F	G	H	I	J	K	L	M	N
A	mm													
800	385	123 ± 5	390	142 ± 10	238 ± 5	70 ± 5	250	260 ± 2	Ф12 x 20	175 ± 1	Ф12	22	50	23
1000	385	123 ± 5	390	142 ± 10	238 ± 5	70 ± 5	250	260 ± 2	Ф12 $\times 20$	175 ± 1	Ф12	22	50	23

- AC Output Reactor Installation

Whether to install an AC output reactor on power output side is dependent on actual situation. Cable connecting AC drive and motor should not be too long; capacitance enlarges when an over-long cable is used and thus high-harmonics current may be easily generated.

When an output reactor used, cable length can be increased to the value in below table.

AC Drive Power (kW)	Rated Voltage (V)	Cable Length Limit (m)
4	200 to 500	50
5.5	200 to 500	70
7.5	200 to 500	100
11	200 to 500	110
15	200 to 500	125
18.5	200 to 500	135
22	200 to 500	150
≥ 30	280 to 690	150

- AC Output Reactor Model

Recommended AC output reactor manufacturer and models are listed in the following table.

AC Drive Model	AC Output Reactor Model (K\&R)
GT600-4T18.5GB	MD-OCL-50-0.14-4T-1\%
GT600-4T22GB	MD-OCL-60-0.12-4T-1\%
GT600-4T30GB	MD-OCL-80-0.087-4T-1\%
GT600-4T37GB	MD-OCL-90-0.078-4T-1\%
GT600-4T45GB	MD-OCL-120-0.058-4T-1\%
GT600-4T55GB	MD-OCL-150-0.047-4T-1\%
GT600-4T75GB	MD-OCL-200-0.035-4T-1\%
GT600-4T90G	MD-OCL-250-0.028-4T-1\%
GT600-4T110G	MD-OCL-250-0.028-4T-1\%
GT600-4T132G	MD-OCL-330-0.021-4T-1\%
GT600-4T160G	

- Designation rules

- Mounting dimensions

Dimensions of AC output reactor of 50 to 120 A are shown as below:

Rated Current	A	B	C	D	E	F	G	H
(A)	(mm)							
50	155	130	148	95	135	95	6×15	80
60	195	165	188	92	130	120	8.5×20	72
80	195	165	188	92	130	120	8.5×20	72
90	195	165	188	92	130	120	8.5×20	72
120	195	165	188	112	140	120	8.5×20	92

Dimensions of AC output reactor of 150 to 250 A are shown as below:

Rated Current	A	B	C	D	E	F	G	H	I	J	K	L	M
A	mm												
150	250	81	81	230	97	5	140	113	170	42	182	11×18	87
200	250	81	81	230	102	5	140	123	175	42	182	11×18	97
250	250	81	81	230	102	5	140	123	175	42	182	11×18	97

Dimension of AC output reactor of 330 A

Rated Current	A	B	C	D	E	F	G	H	I	J	K	L	M
(A)	(mm)												
330	290	95	95	250	110	5	155	132	190	45	214	11×18	106

Note The dimensions of the AC input and output reactors are for reference only.

- dv/dt Reactor Installation

Connect a $\mathrm{dv} / \mathrm{dt}$ reactor on the output side to reduce large $\mathrm{dv} / \mathrm{dt}$, protecting the motor winding from insulation breakdown, lowering motor temperature and extending the motor service life and meanwhile reduce interference on surrounding devices.

- Selection of the $\mathrm{dv} / \mathrm{dt}$ reactor (Schaffner)

AC Drive Model	dv/dt Reactor Model	Rated Current at $40^{\circ} \mathrm{C}$ (A)	Rated Motor Power (kW)	Rated Inducance (mH)	Power Consumption (W)	I/O Terminal Selection			Total (kg)
								0	
$\begin{aligned} & \text { GT600- } \\ & \text { 4T18.5GB } \\ & \hline \end{aligned}$	RWK 305-45-KL	45	18.5	0.131	60	KL	-	-	6.1
GT600-4T22GB	RWK 305-45-KL	45	22	0.131	60	KL	-	-	6.1
GT600-4T30GB	RWK 305-60-KL	60	30	0.098	65	KL	-	-	6.1
GT600-4T37GB	RWK 305-72-KL	72	37	0.082	70	KL	-	-	6.1
GT600-4T45GB	RWK 305-90-KL	90	45	0.065	75	KL	-	-	7.4
GT600-4T55GB	RWK 305-110-KL	110	55	0.053	90	KL	-	-	8.2
GT600-4T75GB	RWK 305-156-KS	156	75	0.038	120	-	1 S	-	10.7
GT600-4T90G	RWK 305-182-KS	182	90	0.032	140	-	1 S	-	16
GT600-4T110G	RWK 305-230-KS	230	110	0.026	180	-	1 S	-	22
GT600-4T132G	RWK 305-280-KS	280	132	0.021	220	-	1 S	-	29
GT600-4T160G	RWK 305-330-KS	330	160	0.018	240	-	1 S	-	32
GT600-4T200G	RWK 305-400-S	400	200	0.015	330	-	-	S	34
GT600-4T220G	RWK 305-500-S	500	220	0.012	340	-	-	S	35
GT600-4T250G	RWK 305-500-S	500	250	0.012	340	-	-	S	35
GT600-4T280G	RWK 305-600-S	600	280	0.01	380	-	-	S	37
GT600-4T315G	RWK 305-600-S	600	315	0.01	380	-	-	S	37
GT600-4T355G	RWK 305-680-S	680	355	0.009	410	-	-	S	38
GT600-4T400G	RWK 305-790-S	790	400	0.007	590	-	-	S	43
GT600-4T450G	RWK 305-910-S	910	450	0.006	740	-	-	S	49

- Mounting Dimensions (Unit: mm)

124-330A

Reactor Series	A (mm)	$\begin{aligned} & \hline \mathrm{B} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & (\mathrm{~mm}) \end{aligned}$	G
4 and 7.8A	100	max. 60	max. 115	56	34	4.8×9	$2.5 \mathrm{~mm}^{2}$
10A	100	max. 70	max. 115	56	43	4.8×9	$2.5 \mathrm{~mm}^{2}$
14A	125	max. 70	max. 135	100	45	5×8	$2.5 \mathrm{~mm}^{2}$
17A	125	max. 75	max. 135	100	55	5×8	$2.5 \mathrm{~mm}^{2}$
24A	125	max. 75	max. 135	100	55	5×8	$4 \mathrm{~mm}^{2}$
32A	155	max. 95	max. 170	130	56	8×12	$10 \mathrm{~mm}^{2}$
45A	155	max. 110	max. 190	130	72	8×12	$10 \mathrm{~mm}^{2}$
60 and 72A	155	max. 125	max. 190	130	70	8×12	$16 \mathrm{~mm}^{2}$
90A	190	max. 115	max. 225	170	57	8×12	$35 \mathrm{~mm}^{2}$
110A	190	max. 130	max. 220	170	67	8×12	$35 \mathrm{~mm}^{2}$
124A	190	max. 180	max. 160	170	67	8×12	¢8
143A	190	max. 180	max. 160	170	77	8×12	ф8
156 and 170A	190	max. 180	max. 160	170	77	8×12	\$10
182A	210	max. 180	max. 185	175	97	8×12	\$10
230A	240	220		190	119	11×15	\$12
280A	240	235		190	133	11×15	\$12
330A	240	240		190	135	11×15	\$12
400 and 500A	240	220		190	119	11×15	\$11
600 and 680A	240	230		190	128	11×15	\$11
790A	300	218		240	136	11×15	\$11
910A	300	228		240	148	11×15	\$11
1100A	360	250		310	144	11×15	¢11

Common-mode Filter
The common-mode filter is installed on output side (close to AC drive) to reduce bearing current and reduce interference on surrounding devices.

The following figure shows installation of common-mode filter.

The following figure shows physical appearance of ferrite core.

Common-mode Filter Model	SN	Dimensions (Outer Diameter \times Inner Diameter \times Thickness) (mm)
DY644020H	11013031	$64 \times 40 \times 20$
DY805020H	11013032	$80 \times 50 \times 20$
DY1207030H	11013033	$120 \times 70 \times 30$

A.1.7 Shielded Cable

Requirements for Shielded Cable
Shielded cable must be used to satisfy EMC requirements of CE marking. Shielded cables are classified into three-conductor cable and four-conductor cable. If conductivity of cable shield is not sufficient, add an independent PE cable, or use a four-conductor cable, of which one phase conductor is PE cable.

Three-conductor cable and four-conductor cable are shown in the following figure.

To suppress emission and conduction of radio frequency interference effectively, shield of cable is cooper braid. Braided density of cooper braid should be greater than 90% to enhance shielding efficiency and conductivity, as shown in the following figure.

Cabling Requirements

- Motor cable and PE shielded conducting wire (twisted shielded) should be as short as possible to reduce electromagnetic radiation and external stray current and capacitive current of the cable. If motor cable is over 100 meters long, an output filter or reactor is required.
- It is recommended that all control cables be shielded.
- It is recommended that motor cables, power input cables and control cables be laid in different ducts. To avoid electromagnetic interference caused by rapid change of output voltage of AC drive, motor cables and other cables must not be laid side by side for a long distance.
- If control cable must run across power cable, make sure they are arranged at an angle of close to 90°. Other cables must not run across AC drive.
- Power input and output cables of AC drive and weak-current signal cables (such as control cable) should be laid vertically (if possible) rather than in parallel.
- Cable ducts must be in good connection and well grounded. Aluminium ducts can be used to improve electric potential.
- Filter, AC drive and motor should be connected to system (machinery or appliance) properly, with spraying protection at installation part and conductive metal in full contact.

A.1.8 Solutions to Current Leakage

AC drive outputs high-speed pulse voltage, producing high-frequency leakage current during running of the drive. Each AC drive produces more than 100 mA leakage current. Therefore, it is necessary to select a residual current circuit-breaker with rated operating current of 100 mA above.

AC drive generates DC leakage current in protective conductor. In this case, a time-delay B-type breaker must be used. If multiple AC drives are required, each AC drive must be installed with a circuit-breaker.

Factors that influence the leakage current are as follows:

- AC drive capacity
- Carrier frequency
- Type and length of motor cable
- EMI filter

When leakage current causes the circuit-breaker to act, you should:

- Increase sensitivity current of circuit-breaker.
- Replace circuit-breaker with a new one with high-frequency suppression function.
- Reduce carrier frequency.
- Shorten length of the output cable.
- Install a current leakage suppression device.

Recommended residual current circuit-breaker manufacturers are Chint Electric and Schneider.

A.1.9 Solutions to Common EMC Interference Problems

AC drive generates very strong interference. Although EMC measures are taken, interference may still exist due to improper cabling or grounding during use. When AC drive interferes with other devices, adopt the following solutions.

Interference Type	Solution
Leakage protection switch tripping	- Reduce carrier frequency. - Shorten length of the AC drive cables. - Wind ferrite core around the drive input cable except PE cable. - For tripping at the moment of power-on, cut off the large capacitance to ground on power input side by disconnecting grounding terminal of external or built-in filter and disconnecting grounding terminal of Y capacitance to ground of input terminals. - For tripping during drive running or when drive enabled, take leakage current suppression measures (install a leakage current filter, install safety capacitor + wind ferrite core).
AC drive interference during running	- Connect motor housing to PE of AC drive. - Connect PE of AC drive to PE of grid. - Wind power input cable with ferrite core. - Add a safety capacitor or ferrite core to interfered signal terminal. - Add an extra common ground.
Communication interference	- Connect motor housing to PE of AC drive. - Connect PE of AC drive to PE of grid. - Wind power input cable with ferrite cores. - Add a matching resistor between communication cable source and load. - Add a common grounding cable besides communication cable. - Use a shielded cable as communication cable and connect cable shield to common grounding point. - Adopt daisy chain mode for multi-node communication and reserve branch length of less than 30 cm .
I/O interference	- Enlarge capacitance at low-speed DI. A maximum of 0.11 uF capacitance is suggested. - Enlarge capacitance at AI. A maximum of 0.22 uF is suggested.

A. 2 UL Certification

If the AC drive has the cULus mark, it indicates that the product complies with the following North Americal Standards.

Country	Certification Name	Standard
U.S.	UL	UL508C
Canada	cUL	C22.2 No.14-13

Note that the motor overtemperature test is not asssessed by UL.

Appendix B Parameter Table

B. 1 Introduction

> | Note | $\begin{array}{l}\text { Password protection is available for use with the drive. If this protection has been enabled, } \\ \text { you will need to know the user-defined password before you can edit the function codes } \\ \text { described in this chapter. See 4.2.6 Password Security } \\ \text { pas instructions to set and remove }\end{array}$ |
| :--- | :--- |
| passord protection. | |

Groups F and A include standard function parameters. Group U includes the monitoring function parameters and extension card communication parameters.

The parameter description tables in this chapter use the following symbols.
The symbols in the parameter table are described as follows:

Symbol	Meaning
	It is possible to modify the parameter with the drive in the stop or in the Run status.
	It is not possible to modify the parameter with the drive in the Run status.
	The parameter is the actual measured value and cannot be modified.
	The parameter is a factory parameter and can be set only by the manufacturer.

B． 2 Standard Parameters

Para．No．	Param．Name	Setting Range	Default	Property	Page
Group F0：Standard Parameters					
F0－00	G／P type display	1 and 2	Model dependent	\bullet	－
F0－01	Motor 1 control mode	0 to 2	0	\star	－
F0－02	Command source selection	0 to 2	0	动	100
F0－03	Main frequency reference setting channel selection	0 to 9	0	\star	108
F0－04	Auxiliary frequency reference setting channel selection	0 to 9	0	\star	
F0－05	Base value of range of auxiliary frequency reference for Main and auxiliary calculation	0， 1	0	3	132
F0－06	Range of auxiliary frequency reference for main and auxiliary calculation	0\％to 150\％	100\％	去	132
F0－07	Final Frequency reference setting selection	00 to 34	00	3	132
F0－08	Preset frequency	0.00 to max．frequency（F0－10）	50.00 Hz	动	110
F0－09	Running direction	0， 1	0	3	212
F0－10	Max．frequency	50.00 to 500.00 Hz	50.00 Hz	\star	134
F0－11	Setting channel of frequency upper limit	0 to 5	0	\star	134
F0－12	Frequency reference upper limit	Frequency lower limit（F0－14） to max．frequency（F0－10）	50.00 Hz	动	134
F0－13	Frequency reference upper limit offset	0.00 Hz to max．frequency（F0－ 10）	0.00 Hz	3	－
F0－14	Frequency reference lower limit	0.00 Hz to frequency upper limit（F0－12）	0.00 Hz	施	134
F0－15	Carrier frequency	Model dependent	Model dependent	H	－
F0－16	Carrier frequency adjusted with temperature	0 ：Disabled 1：Enabled	1	施	－
F0－17	Acceleration time 1	$\begin{aligned} & \text { 0.00s to } 650.00 \text { s }(F 0-19=2) \\ & \text { 0.0s to } 6500.0 \text { s }(F 0-19=1) \\ & \text { Os to } 65000 \text { s }(F 0-19=0) \end{aligned}$	Model dependent	施	141
F0－18	Deceleration time 1	$\begin{aligned} & \text { 0.00s to 650.00s }(F 0-19=2) \\ & 0.0 \text { s to } 6500.0 \text { s }(F 0-19=1) \\ & 0 \text { s to } 65000 \text { s (F0-19 }=0) \end{aligned}$	Model dependent	3	141
F0－19	Acceleration／Deceleration time unit	$\begin{aligned} & \hline 0: 1 \mathrm{~s} \\ & 1: 0.1 \mathrm{~s} \\ & 2: 0.01 \mathrm{~s} \end{aligned}$	1	\star	141
F0－21	Frequency offset of Auxiliary frequency setting channel for main and auxiliary calculation	0.00 Hz to max．frequency（F0－ 10）	0.00 Hz	＊	－

Para. No.	Para. Name	Setting Range	Default	Property	Page
F0-22	Frequency reference resolution	2	2	\star	-
F0-23	Retentive of digital setting frequency upon stop	0, 1	0	动	110
F0-24	Motor parameter group selection	0, 1	0	\star	176
F0-25	Acceleration/Deceleration time base frequency	0 to 2	0	\star	141
F0-26	Base frequency for UP/DOWN modification during running	0, 1	0	\star	-
F0-27	Command source + frequency source	000 to 999	000	动	133
F0-28	Serial port comms. protocol	0, 1	0	\star	107
Group F1: Motor 1 Parameters					
F1-00	Motor type selection	0, 1	0	\star	144
F1-01	Rated motor power	0.1 to 1000.0 kW	Model dependent	\star	144
F1-02	Rated motor voltage	1 to 2000 V	Model dependent	\star	144
F1-03	Rated motor current	0.01 to 655.35 A (AC drive power $\leq 55 \mathrm{~kW}$) 0.1 to 6553.5 A (AC drive power > 55 kW)	Model dependent	\star	144
F1-04	Rated motor frequency	0.01 Hz to max. frequency	Model dependent	\star	144
F1-05	Rated motor speed	1 to 65535 rpm	Model dependent	\star	144
F1-06	Stator resistance	0.001 to 65.535Ω (AC drive power $\leq 55 \mathrm{~kW}$) 0.0001 to 6.5535Ω (AC drive power > 55 kW)	Auto-tuning dependent	\star	144
F1-07	Rotor resistance	0.001 to 65.535Ω (AC drive power $\leq 55 \mathrm{~kW}$) 0.0001 to 6.5535Ω (AC drive power > 55 kW)	Auto-tuning dependent	\star	144
F1-08	Leakage inductive reactance	0.01 to 655.35 mH (AC drive power $\leq 55 \mathrm{~kW}$) 0.001 to 65.535 mH (AC drive power $>55 \mathrm{~kW}$)	Auto-tuning dependent	\star	144
F1-09	Mutual inductive reactance	```0.1 to 6553.5 mH (AC drive power \leq 55 kW) 0.01 to 655.35 mH (AC drive power > 55 kW)```	Auto-tuning dependent	\star	144
F1-10	No-load current	0.01 A to F1-03 (AC drive power $\leq 55 \mathrm{~kW}$) 0.1 A to F1-03 (AC drive power > 55 kW)	Auto-tuning dependent	\star	144
F1-27	Encoder pulses per revolution	1 to 65535	1024	\star	145
F1-28	Encoder type	0 : ABZ incremental encoder 2: Resolver	0	\star	145

Para．No．	Para．Name	Setting Range	Default	Property	Page
F1－30	A／B phase sequence of $A B Z$ incremental encoder	0：Forward 1：Reserve	0	＊	145
F1－34	Number of pole pairs of resolver	1 to 65535	1	\star	145
F1－36	Encoder wire－break fault detection time	0.0 s：No detection 0.1 s to 10．0s	0．0s	\star	145
F1－37	Motor auto－tuning method selection	0 to 3	0	\star	145
Group F2：Vector Control Parameters					
F2－00	Speed loop proportional gain 1	1 to 100	30	紓	152
F2－01	Speed loop integral time 1	0．01s to 10．00s	0．50s	动	152
F2－02	Switchover frequency 1	0.00 to F2－05	5.00 Hz	縎	152
F2－03	Speed loop proportional gain 2	1 to 100	20	放	152
F2－04	Speed loop integral time 2	0．01s to 10．00s	1．00s	动	152
F2－05	Switchover frequency 2	F2－02 to max．frequency	10.00 Hz	动	152
F2－06	SVC／FVC slip compensation gain	50\％to 200\％	100\％	动	152
F2－07	Speed feedback filter time constant	0.000 s to 0.100 s	0．015s	\％	152
F2－09	Torque limit source in speed control	0 to 7	0	3	152
F2－10	Digital setting of torque limit in speed control	0．0\％to 200．0\％	150．0\％	\％	152
F2－11	Torque limit source in speed control（in regenerative state）	0 to 7	0	\％	152
F2－12	Digital setting of torque limit in speed control（in regenerative state）	0．0\％to 200．0\％	150．0\％	动	154
F2－13	Excitation adjustment proportional gain	0 to 60000	2000	动	156
F2－14	Excitation adjustment integral gain	0 to 60000	1300	i	156
F2－15	Torque adjustment proportional gain	0 to 60000	2000	紓	156
F2－16	Torque adjustment integral gain	0 to 60000	1300	动	156
F2－17	Speed loop integral separation selection	0 ：Disabled 1：Enabled	0	\％	－
F2－21	Max．torque coefficient of field weakening area	50\％to 200\％	100\％	＊	156
F2－22	Regenerative power limit selection	0 ：Disabled 1：Enabled in the whole process 2：Enabled at constant speed 3：Enabled during deceleration	0	动	154
F2－23	Regenerative power limit	0．0\％to 200．0\％	Model dependent	\％	154

Para．No．	Para．Name	Setting Range	Default	Property	Page
Group F3：V／F Control Parameters					
F3－00	V／F curve setting	0，2－9：Linear V／F 1：Multi－point V／F 10：V／F separation 11：Specific V／F separation	0	\star	149
F3－01	Torque boost	0.0% ：automatic torque boost $0.1 \% \text { to 30\% }$	Model dependent	动	149
F3－02	Cut－off frequency of torque boost	0.00 Hz to max．frequency	50.00 Hz	\star	149
F3－03	Multi－point V／F frequency 1	0.00 Hz to F3－05	0.00 Hz	\star	149
F3－04	Multi－point V／F voltage 1	0．0\％to 100．0\％	0．0\％	\star	149
F3－05	Multi－point V／F frequency 2	F3－03 to F3－07	0.00 Hz	\star	149
F3－06	Multi－point V／F voltage 2	0．0\％to 100．0\％	0．0\％	\star	149
F3－07	Multi－point V／F frequency 3	F3－05 to rated motor frequency（F1－04）	0.00 Hz	\star	149
F3－08	Multi－point V／F voltage 3	0．0\％to 100．0\％	0．0\％	\star	149
F3－10	V／F over－excitation gain	0 to 200	64	动	151
F3－11	V／F oscillation suppression gain	0 to 100	40	3	151
F3－13	Voltage source for V／F separation	0 to 8	0	动	148
F3－14	Digital setting of voltage for V／F separation	0 V to rated motor voltage	0 V	＊	148
F3－15	Voltage rise time of V／F separation	0．0s to 1000．0s	0．0s	＊	148
F3－16	Voltage decline time of V／F separation	0．0s to 1000．0s	0．0s	＊	148
F3－17	Stop mode selection for V／F separation	0 ：Frequency and voltage declining to 0 independently 1：Frequency declining after voltage declines to 0	0	＊	148
F3－18	Current limit level	50\％to 200\％	150\％	\star	150
F3－19	Current limit selection	0， 1	1	\star	150
F3－20	Current limit gain	0 to 100	20	动	150
F3－21	Compensation factor of speed multiplying current limit level	50% to 200\％	50\％	\star	150
F3－22	Voltage limit	650 to 800 V	770 V	\star	151
F3－23	Voltage limit selection	0， 1	1	\star	151
F3－24	Frequency gain for voltage limit	0 to 100	30	动	151
F3－25	Voltage gain for voltage limit	0 to 100	30	H	151
F3－26	Frequency rise threshold during voltage limit	0 to 50 Hz	5 Hz	\star	151

Para．No．	Para．Name	Setting Range	Default	Property	Page
Group F4：Input Terminals					
F4－00	DI1 function selection	0 to 59	1	\star	190
F4－01	DI2 function selection	0 to 59	4	\star	190
F4－02	DI3 function selection	0 to 59	9	\star	190
F4－03	DI4 function selection	0 to 59	12	\star	190
F4－04	DI5 function selection	0 to 59	13	\star	190
F4－05	DI6 function selection	0 to 59	0	\star	190
F4－06	DI7 function selection	0 to 59	0	\star	190
F4－07	DI8 function selection	0 to 59	0	\star	190
F4－08	DI9 function selection	0 to 59	0	\star	190
F4－09	DI10 function selection	0 to 59	0	\star	190
F4－10	DI filter time	0.000 s to 1.000 s	0．010s	is	－
F4－11	Terminal I／O control mode	0 to 3	0	\star	101
F4－12	Terminal UP／DOWN rate	0.001 to $65.535 \mathrm{~Hz} / \mathrm{s}$	$1.000 \mathrm{~Hz} / \mathrm{s}$	u	－
F4－13	Al curve 1 min．input	0.00 V to F4－15	0.00 V	給	111
F4－14	Corresponding percentage of Al curve 1 min．input	－100．00\％to 100．0\％	0．0\％	动	111
F4－15	Al curve 1 max．input	F4－13 to 10.00 V	10.00 V	＊	111
F4－16	Corresponding percentage of Al curve 1 max．input	-100.00% to 100.0%	100．0\％	＊	111
F4－17	Al1 filter time	0．00s to 10.00 s	0．10s	\％	114
F4－18	Al curve 2 min．input	0.00 V to F4－20	0.00 V	动	112
F4－19	Corresponding percentage of Al curve 2 min．input	－100．00\％to 100．0\％	0．0\％	\％	112
F4－20	Al curve 2 max．input	F4－18 to 10.00 V	10.00 V	is	112
F4－21	Corresponding percentage of AI curve 2 max．input	-100.00% to 100.0%	100．0\％	\％	112
F4－22	Al2 filter time	0．00s to 10.00 s	0．10s	\％	114
F4－23	Al3 curve min．input	－10．00 V to F4－25	0.00 V	访	112
F4－24	Corresponding percentage of AI curve 3 min．input	－100．00\％to 100．0\％	0．0\％	\％	112
F4－25	Al curve 3 max．input	F4－23 to 10.00 V	10.00 V	\％	112
F4－26	Corresponding percentage of AI curve 3 max．input	-100.00% to 100．0\％	100．0\％	动	112
F4－27	Al3 filter time	0．00s to 10.00 s	0．10s	is	114
F4－28	Pulse min．input	0.00 kHz to F4－30	0.00 kHz	$\stackrel{*}{4}$	116
F4－29	Corresponding percentage of pulse min．input	－100．00\％to 100．0\％	0．0\％	＊	116
F4－30	Pulse max．input	F4－28 to 100.00 kHz	50.00 kHz	\％	116

Para．No．	Para．Name	Setting Range	Default	Property	Page
F5－21	DO2 output delay	0.0 s to 3600.0 s	0.0 s	放	196
F5－22	Dl active mode selection 1	00000 to 11111	00000	is	196

Para．No．	Para．Name	Setting Range	Default	Property	Page
Group F6：Start／Stop Control					
F6－00	Start mode	0：Direct start 1：Catching a spinning motor 2：Pre－excited start 3：SVC quick start	0	\％	135
F6－01	Mode of catching a spinning motor	0 ：From stop frequency 1：From 50 Hz 2：From max．frequency	0	\star	135
F6－02	Speed of catching a spinning motor	1 to 100	20	\％	135
F6－03	Start frequency	0.00 to 10.00 Hz	0.00 Hz	动	135
F6－04	Start frequency holding time	0．0s to 100．0s	0．0s	\star	135
F6－05	DC injection braking 1 level／Pre－ excitation level	0\％to 100%	50\％	\star	135
F6－06	DC injection braking 1 active time ／Pre－excitation active time	0．0s to 100．0s	0．0s	\star	135
F6－07	Acceleration／Deceleration mode	0 to 2	0	\star	141
F6－08	Time proportion of S－curve start segment	0．0\％to（100．0\％－F6－09）	30．0\％	\star	141
F6－09	Time proportion of S－curve end segment	0．0\％to（100．0\％－F6－08）	30．0\％	\star	141
F6－10	Stop mode	0：Decelerate to stop 1：Coast to stop	0	＊	138
F6－11	DC injection braking 2 start frequency	0.00 Hz to maximum frequency	0.00 Hz	＊	138
F6－12	DC injection braking 2 delay time	0.0 to 100．0s	0．0s	\％	138
F6－13	DC injection braking 2 level	0\％to 100%	50\％	\％	138
F6－14	DC injection braking 2 active time	0．0s to 100．0s	0．0s	动	138
F6－15	Braking use ratio	0\％to 100\％	100\％	动	－
F6－18	Catching a spinning motor current limit	30\％to 200\％	Model dependent	\star	－
F6－21	Demagnetization time（effective for SVC）	0．00s to 5.00 s	Model dependent	\％	－

Para．No．	Para．Name	Setting Range	Default	Property	Page
F6－23	Overexcitation selection	0 ：Disabled	0	\％	－
		1：Enabled during deceleration			
		2：Enabled in the whole process			
F6－24	Overexcitation suppression current level	0\％to 150\％	100\％	动	－
F6－25	Overexcitation gain	1.00 to 2.50	1.25	动	－
Group F7：Keypad Operation and LED Display					
F7－00	LED default display check	0， 1	0	动	－
F7－01	MF．K key function selection	0 to 4	0	\star	－
F7－02	STOP／RESET key function	0， 1	1	縎	－
F7－03	LED display running parameters 1	0000 to FFFF	1F	动	135
F7－04	LED display running parameters 2	0000 to FFFF	33	放	135
F7－05	LED display stop parameters	0000 to FFFF	33	H	167
F7－06	Load speed display coefficient	0.0001 to 6.5000	1.0000	动	－
F7－07	Heatsink temperature of AC Drive IGBT	$-20^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$	－	－	－
F7－09	Accumulative running time	0 to 65535 h	－	\bullet	－
F7－10	Performance software version	－	－	\bullet	－
F7－11	Function software version	－	－	－	－
F7－12	Number of decimal places for load speed display	10 to 23	21	i	－
F7－13	Accumulative power－on time	0 to 65535 h	－	\bullet	－
F7－14	Accumulative power consumption	0 to 65535 kWh	－	－	－
Group F8：Auxiliary Functions					
F8－00	Jog frequency reference	0.00 Hz to max．frequency	2.00 Hz	丞	210
F8－01	Jog acceleration time	0．0s to 6500．0s	20．0s	动	210
F8－02	Jog deceleration time	0．0s to 6500．0s	20．0s	\％	210
F8－03	Acceleration time 2	0．0s to 6500．0s	Model dependent	3	141
F8－04	Deceleration time 2	0．0s to 6500．0s	Model dependent	3	141
F8－05	Acceleration time 3	0．0s to 6500．0s	Model dependent	\％	141
F8－06	Deceleration time 3	0．0s to 6500．0s	Model dependent	3	141
F8－07	Acceleration time 4	0．0s to 6500．0s	0．0s	动	141
F8－08	Deceleration time 4	0．0s to 6500．0s	0．0s	漦	141
F8－09	Frequency jump 1	0.00 Hz to max．frequency	0.00 Hz	䘾	211
F8－10	Frequency jump 2	0.00 Hz to max．frequency	0.00 Hz	呇	211
F8－11	Frequency jump band	0.00 Hz to max．frequency	0.00 Hz	H	211

Para．No．	Para．Name	Setting Range	Default	Property	Page
F8－12	Forward／Reverse run switchover dead－zone time	0．0s to 3000．0s	0．0s	动	212
F8－13	Reverse RUN selection	0， 1	0	动	212
F8－14	Running mode when frequency reference lower than frequency lower limit	0 to 2	0	动	134
F8－15	Droop rate	0．00\％to 100．00\％	0．00\％	放	187
F8－16	Accumulative power－on time threshold	0 to 65000 h	0 h	动	－
F8－17	Accumulative running time threshold	0 to 65000 h	0 h	动	－
F8－18	Startup protection selection	0， 1	0	动	－
F8－19	Frequency detection value 1	0.00 Hz to max．frequency	50.00 Hz	动	213
F8－20	Frequency detection hysteresis 1	0．0\％to 100．0\％	5．0\％	动	213
F8－21	Detection width of target frequency reached	0．0\％to 100．0\％	0．0\％	放	213
F8－22	Jump frequency function	0， 1	0	放	211
F8－25	Switchover frequency of accel time 1 and accel time 2	0.00 Hz to max．frequency	0.00 Hz	动	214
F8－26	Switchover frequency of decel time 1 and decel time 2	0.00 Hz to max．frequency	0.00 Hz	＊	214
F8－27	Set highest priority to terminal JOG function	0， 1	0	动	210
F8－28	Frequency detection value 2	0.00 Hz to max．frequency	50.00 Hz	动	213
F8－29	Frequency detection hysteresis 2	0．0\％to 100．0\％	5．0\％	\％	213
F8－30	Detection of frequency 1	0.00 Hz to max．frequency	50.00 Hz	\％	215
F8－31	Detection width of frequency 1	0．0\％to 100．0\％（max． frequency）	0．0\％	动	215
F8－32	Detection of frequency 2	0.00 Hz to max．frequency	50.00 Hz	动	215
F8－33	Detection width of frequency 2	0.0% to 100.0%（max． frequency）	0．0\％	\％	215
F8－34	Zero current detection level	0.0% to 300.0%（rated motor current）	5．0\％	3	215
F8－35	Zero current detection delay	0．01s to 600．00s	0．10s	动	215
F8－36	Output overcurrent threshold	0.0%（no detection） 0.1% to 300．0\％（rated motor current）	200．0\％	\％	164
F8－37	Output overcurrent detection delay	0.00 s to 600.00 s	0．00s	3	164
F8－38	Detection level of current 1	0.0% to 300.0%（rated motor current）	100．0\％	i	216
F8－39	Detection width of current 1	0.0% to 300.0%（rated motor current）	0．0\％	3	216
F8－40	Detection level of current 2	0．0\％to 300．0\％（rated motor current）	100．0\％	3	216

Para．No．	Para．Name	Setting Range	Default	Property	Page
F8－41	Detection width of current 2	0.0% to 300.0%（rated motor current）	0．0\％	动	216
F8－42	Timing function	0， 1	0	\star	216
F8－43	Running time setting channel	0 to 3	0	\star	216
F8－44	Running time	0.0 to 6500.0 min	0.0 min	\star	216
F8－45	Al1 input voltage lower limit	0.00 V to F8－46	3.10 V	动	217
F8－46	Al1 input voltage upper limit	F8－45 to 10.00 V	6.80 V	动	217
F8－47	IGBT temperature threshold	$0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	\％	217
F8－48	Cooling fan working mode	0， 1	0	\％	217
F8－49	Wakeup frequency	F8－51 to max．frequency （F0－10）	0.00 Hz	紟	218
F8－50	Wakeup delay time	0．0s to 6500．0s	0．0s	3	218
F8－51	Hibernating frequency	0.00 Hz to wakeup frequency (F8-49)	0.00 Hz	\％	218
F8－52	Hibernating delay time	0．0s to 6500．0s	0．0s	＊	218
F8－53	Running time threshold this time	0.0 to 6500.0 min	0.0 min	＊	218
F8－54	Output power correction coefficient	0．0\％to 200．0\％	100．0\％	\％	218
F8－55	Deceleration time for emergency stop	Os to 6553．5s	Model dependent	动	218
Group F9：Fault and Protection					
F9－00	Motor overload protection	0， 1	1	放	157
F9－01	Motor overload protection gain	0.20 to 10.00	1.00	动	157
F9－02	Motor overload pre－warning coefficient	50% to 100%	80\％	\％	158
F9－03	Overvoltage protection gain	0 （no overvoltage stall）to 100	30	3	151
F9－04	Overvoltage protection voltage	650 to 800 V	770 V	动	151
F9－07	Detection of short－circuit to ground upon power－on	00 to 11	01	动	－
F9－08	Braking unit applied voltage	650 to 800 V	760 V	\star	151
F9－09	Auto reset times	0 to 20	0	动	159
F9－10	Selection of DO action during auto reset	0， 1	0	动	159
F9－11	Delay of auto reset	0.1 s to 100.0 s	1．0s	动	159
F9－12	Input phase loss／pre－charge relay protection	00 to 11	11	＊	158
F9－13	Output phase loss protection	00 to 11	01	\％	158
F9－14	1st fault type	0 to 55	－	\bullet	－
F9－15	2nd fault type	0 to 55	－	\bullet	－
F9－16	3rd（latest）fault type	0 to 55	－	－	－
F9－17	Frequency upon 3rd fault	－	－	\bullet	－
F9－18	Current upon 3rd fault	－	－	\bullet	－
F9－19	Bus voltage upon 3rd fault	－	－	\bullet	－

Para. No.	Para. Name	Setting Range	Default	Property	Page
F9-20	DI state upon 3rd fault	-	-	-	-
F9-21	DO state upon 3rd fault	-	-	-	-
F9-22	AC drive state upon 3rd fault	-	-	-	-
F9-23	Power-on time upon 3rd fault	-	-	\bullet	-
F9-24	Running time upon 3rd fault	-	-	-	-
F9-27	Frequency upon 2nd fault	-	-	\bullet	-
F9-28	Current upon 2nd fault	-	-	-	-
F9-29	Bus voltage upon 2nd fault	-	-	-	-
F9-30	DI state upon 2nd fault	-	-	-	-
F9-31	DO state upon 2nd fault	-	-	\bullet	-
F9-32	AC drive state upon 2nd fault	-	-	-	-
F9-33	Power-on time upon 2nd fault	-	-	-	-
F9-34	Running time upon 2nd fault	-	-	-	-
F9-37	Frequency upon 1st fault	-	-	\bullet	-
F9-38	Current upon 1st fault	-	-	\bullet	-
F9-39	Bus voltage upon 1st fault	-	-	\bullet	-
F9-40	DI state upon 1st fault	-	-	-	-
F9-41	DO state upon 1st fault	-	-	-	-
F9-42	AC drive state upon 1st fault	-	-	-	-
F9-43	Power-on time upon 1st fault	-	-	-	-
F9-44	Running time upon 1st fault	-	-	\bullet	-
F9-47	Fault protection action selection 1	00000 to 22222	00000	认	159
F9-48	Fault protection action selection 2	00000 to 11111	00000	\%	159
F9-49	Fault protection action selection 3	00000 to 22222	00000	\%	160
F9-50	Fault protection action selection 4	00000 to 22222	00000	\%	160
F9-54	Frequency selection for continuing to run upon fault	0 to 4	0	动	160
F9-55	Backup frequency upon fault	0.0\% to 100.0\% (max. frequency)	100.0\%	3	160
F9-56	Type of motor temperature sensor	0: No temperature sensor 1: PT100 2: PT1000	0	\%	161
F9-57	Motor overheat protection threshold	$0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	\%	161
F9-58	Motor overheat pre-warning threshold	$0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	\%	161
F9-59	Power dip ride-through function selection	0 to 2	0	\star	162
F9-60	Threshold of power dip ridethrough function disabled	80\% to 100%	85\%	\star	162
F9-61	Judging time of bus voltage recovering from power dip	0.0s to 100.0s	0.5s	\star	162

Para．No．	Para．Name	Setting Range	Default	Property	Page
F9－62	Threshold of power dip ride－ through function enabled	60\％to 100%	80\％	\star	162
F9－63	Load lost protection	0 ：Disabled 1：Enabled	0	动	162
F9－64	Load lost detection level	0．0\％to 100．0\％	10．0\％	\％	162
F9－65	Load lost detection time	0．0s to 60．0s	1．0s	动	162
F9－67	Overspeed detection level	0.0% to 50.0%（max． frequency）	20．0\％	动	163
F9－68	Overspeed detection time	0．0s to 60．0s	1．0s	H	163
F9－69	Detection level of speed error	0．0\％to 50．0\％（max． frequency）	20．0\％	动	163
F9－70	Detection time of speed error	0．0s to 60．0s	5．0s	\％	163
F9－71	Power dip ride－through gain Kp	0 to 100	40	3	162
F9－72	Power dip ride－through integral coefficient	0 to 100	30	动	162
F9－73	Deceleration time of power dip ride－through	0．0s to 300．0s	20．0s	\star	162
Group FA：PID Function					
FA－00	PID reference setting channel	0 to 6	0	H	123
FA－01	PID digital setting	0．0\％to 100．0\％	50．0\％	\％	123
FA－02	PID feedback setting channel	0 to 8	0	\％	123
FA－03	PID operation direction	0， 1	0	动	123
FA－04	PID reference and feedback range	0 to 65535	1000	动	123
FA－05	Proportional gain Kp1	0.0 to 1000.0	20.0	＊	123
FA－06	Integral time Ti1	0．01s to 10.00 s	2．00s	＊	123
FA－07	Differential time Td1	0.000 s to 10.000 s	0．000s	3	123
FA－08	PID output limit in reverse direction	0.00 Hz to max．frequency	0.00 Hz	\star	124
FA－09	PID error limit	0．0\％to 100．0\％	0．0\％	\％	124
FA－10	PID differential limit	0．00\％to 100．00\％	0．10\％	\％	124
FA－11	PID reference change time	0．00s to 650．00s	0．00s	3	124
FA－12	PID feedback filter time	0．00s to 60．00s	0．00s	＊	124
FA－13	PID output filter time	0．00s to 60．00s	0．00s	\％	124
FA－14	Reserved	－	－		－
FA－15	Proportional gain Kp2	0.0 to 1000.0	20.0	3	125
FA－16	Integral time Ti2	0．01s to 10.00 s	2．00s	\％	125
FA－17	Differential time Td2	0．000s to 10.000 s	0．000s	动	125
FA－18	PID parameter switchover condition	0 to 3	0	縎	125
FA－19	PID error 1 for auto switchover	0．0\％to FA－20	20．0\％	3	125

Para．No．	Para．Name	Setting Range	Default	Property	Page
FA－20	PID error 2 for auto switchover	FA－19 to 100．0\％	80．0\％	动	125
FA－21	PID initial value	0．0\％to 100．0\％	0．0\％	动	125
FA－22	PID initial value active time	0．00s to 650．00s	0．00s	is	125
FA－25	PID integral property	00 to 11	00	is	126
FA－26	Detection level of PID feedback loss	$\begin{aligned} & \hline 0.0 \% \text { : No detection } \\ & 0.1 \% \text { to } 100.0 \% \\ & \hline \end{aligned}$	0．0\％		126
FA－27	Detection time of PID feedback loss	0．0s to 20．0s	0．0s	\％	126
FA－28	Selection of PID operation at stop	0， 1	0	动	126
Group Fb：Wobble Function，Fixed Length and Count					
Fb－00	Wobble setting mode	0， 1	0	is	173
Fb－01	Wobble amplitude	0．0\％to 100．0\％	0．0\％	动	173
Fb－02	Wobble step	0．0\％to 50．0\％	0．0\％	动	173
Fb－03	Wobble cycle	0．0s to 3000．0s	10．0s	is	173
Fb－04	Triangular wave rising time coefficient	0．0\％to 100．0\％	50．0\％	is	173
Fb－05	Set length	0 to 65535 m	1000 m	动	173
Fb－06	Actual length	0 to 65535 m	0 m	is	173
Fb－07	Number of pulses per meter	0.1 to 6553.5	100.0	縎	173
Fb－08	Set count value	1 to 65535	1000	动	173
Fb－09	Designated count value	1 to 65535	1000	\％	173
Group FC：Multi－Reference and Simple PLC Function					
FC－00	Reference 0	－100．0\％to 100．0\％	0．0\％	is	117
FC－01	Reference 1	－100．0\％to 100．0\％	0．0\％	动	117
FC－02	Reference 2	－100．0\％to 100．0\％	0．0\％	is	117
FC－03	Reference 3	－100．0\％to 100．0\％	0．0\％	动	117
FC－04	Reference 4	－100．0\％to 100．0\％	0．0\％	\％	117
FC－05	Reference 5	－100．0\％to 100．0\％	0．0\％	动	117
FC－06	Reference 6	－100．0\％to 100．0\％	0．0\％	动	117
FC－07	Reference 7	－100．0\％to 100．0\％	0．0\％	is	117
FC－08	Reference 8	－100．0\％to 100．0\％	0．0\％	\％	117
FC－09	Reference 9	－100．0\％to 100．0\％	0．0\％	动	117
FC－10	Reference 10	－100．0\％to 100．0\％	0．0\％	\％	117
FC－11	Reference 11	－100．0\％to 100．0\％	0．0\％	is	117
FC－12	Reference 12	－100．0\％to 100．0\％	0．0\％	紓	117
FC－13	Reference 13	－100．0\％to 100．0\％	0．0\％	is	117
FC－14	Reference 14	－100．0\％to 100．0\％	0．0\％		117
FC－15	Reference 15	－100．0\％to 100．0\％	0．0\％	动	117
FC－16	Simple PLC running mode	0 to 2	0	动	120
FC－17	Simple PLC retentive selection	00 to 11	00	动	120

Para．No．	Para．Name	Setting Range	Default	Property	Page
FC－18	Running time of simple PLC reference 0	0．0s（h）to 6553．5s（h）	0．0s（h）	i	119
FC－19	Acceleration／deceleration time of simple PLC reference 0	0 to 3	0	动	119
FC－20	Running time of simple PLC reference 1	0．0s（h）to 6553．5s（h）	0．0s（h）	动	119
FC－21	Acceleration／deceleration time of simple PLC reference 1	0 to 3	0	动	119
FC－22	Running time of simple PLC reference 2	0．0s（h）to 6553．5s（h）	0．0s（h）	＊	119

Para．No．	Para．Name	Setting Range	Default	Property	Page
FC－23	Acceleration／deceleration time of simple PLC reference 2	0 to 3	0	动	119
FC－24	Running time of simple PLC reference 3	0．0s（h）to 6553．5s（h）	0．0s（h）	访	119
FC－25	Acceleration／deceleration time of simple PLC reference 3	0 to 3	0	动	119
FC－26	Running time of simple PLC reference 4	0．0s（h）to 6553．5s（h）	0．0s（h）	＊	119
FC－27	Acceleration／deceleration time of simple PLC reference 4	0 to 3	0	动	119
FC－28	Running time of simple PLC reference 5	0．0s（h）to 6553．5s（h）	0．0s（h）	动	119
FC－29	Acceleration／deceleration time of simple PLC reference 5	0 to 3	0	动	119
FC－30	Running time of simple PLC reference 6	0．0s（h）to 6553．5s（h）	0．0s（h）	＊	119
FC－31	Acceleration／deceleration time of simple PLC reference 6	0 to 3	0	＊	119
FC－32	Running time of simple PLC reference 7	0．0s（h）to 6553．5s（h）	0．0s（h）	i	119
FC－33	Acceleration／deceleration time of simple PLC reference 7	0 to 3	0	令	119
FC－34	Running time of simple PLC reference 8	0．0s（h）to 6553．5s（h）	0．0s（h）	动	119
FC－35	Acceleration／deceleration time of simple PLC reference 8	0 to 3	0	动	119
FC－36	Running time of simple PLC reference 9	0．0s（h）to 6553．5s（h）	0．0s（h）	＊	119
FC－37	Acceleration／deceleration time of simple PLC reference 9	0 to 3	0	动	119
FC－38	Running time of simple PLC reference 10	0．0s（h）to 6553．5s（h）	0．0s（h）	动	119
FC－39	Acceleration／deceleration time of simple PLC reference 10	0 to 3	0	动	119
FC－40	Running time of simple PLC reference 11	0．0s（h）to 6553．5s（h）	0．0s（h）	＊	119
FC－41	Acceleration／deceleration time of simple PLC reference 11	0 to 3	0	＊	120
FC－42	Running time of simple PLC reference 12	0．0s（h）to 6553．5s（h）	0．0s（h）	动	120

Para．No．	Para．Name	Setting Range	Default	Property	Page
FC－43	Acceleration／deceleration time of simple PLC reference 12	0 to 3	0	动	120
FC－44	Running time of simple PLC reference 13	0．0s（h）to 6553．5s（h）	0．0s（h）	动	120
FC－45	Acceleration／deceleration time of simple PLC reference 13	0 to 3	0	3	120
FC－46	Running time of simple PLC reference 14	0．0s（h）to 6553．5s（h）	0．0s（h）	3	120
FC－47	Acceleration／deceleration time of simple PLC reference 14	0 to 3	0	动	120
FC－48	Running time of simple PLC reference 15	0．0s（h）to 6553．5s（h）	0．0s（h）	动	120
FC－49	Acceleration／deceleration time of simple PLC reference 15	0 to 3	0	动	120
FC－50	Time unit of simple PLC running	0， 1	0	\％	121
FC－51	Reference 0 source	0 to 6	0	动	121
Group Fd：Communication					
Fd－00	Baud rate	0000 to 6039	5005	姣	235
Fd－01	Data format symbol	0 to 3	0	动	235
Fd－02	Local address	0 ：Broadcast address； 1 to 247	1	\％	235
Fd－03	Response delay	0 to 20 ms	2	访	235
Fd－04	Communication timeout	0.0 ：invalid 0.1 s to 60．0s	0．0s	\％	235
Fd－05	Modbus protocol selection and PROFIBUS－DP data frame	00 to 31	30	动	235
Fd－06	Current resolution read by communication	$\begin{aligned} & 0: 0.01 \\ & 1: 0.1 \end{aligned}$	0	动	235
Fd－08	CANlink communication timeout time	$\begin{aligned} & 0.0 \text { (Invalid) } \\ & 0.1 \text { to } 60.0 \end{aligned}$	0	动	235
Group FE：User－Defined Parameters					
FE－00	User－defined parameter 0	F0－00 to FP－xx，A0－00 to Ax－xx，U0－00 to U0－xx，U3－ 00 to U3－xx	F0－00	动	－
FE－01	User－defined parameter 1	Same as FE－00	F0－02	is	－
FE－02	User－defined parameter 2	Same as FE－00	F0－03	动	－
FE－03	User－defined parameter 3	Same as FE－00	F0－07	\％	－
FE－04	User－defined parameter 4	Same as FE－00	F0－08	放	－
FE－05	User－defined parameter 5	Same as FE－00	F0－17	动	－
FE－06	User－defined parameter 6	Same as FE－00	F0－18	H	－
FE－07	User－defined parameter 7	Same as FE－00	F3－00	动	－
FE－08	User－defined parameter 8	Same as FE－00	F3－01	放	－
FE－09	User－defined parameter 9	Same as FE－00	F4－00	3	－

Para．No．	Para．Name	Setting Range	Default	Property	Page
FE－10	User－defined parameter 10	Same as FE－00	F4－01	is	－
FE－11	User－defined parameter 11	Same as FE－00	F4－02	动	－
FE－12	User－defined parameter 12	Same as FE－00	F5－04	放	－
FE－13	User－defined parameter 13	Same as FE－00	F5－07	动	－
FE－14	User－defined parameter 14	Same as FE－00	F6－00	放	－
FE－15	User－defined parameter 15	Same as FE－00	F6－10	动	－
FE－16	User－defined parameter 16	Same as FE－00	F0－00	动	－
FE－17	User－defined parameter 17	Same as FE－00	F0－00	动	－
FE－18	User－defined parameter 18	Same as FE－00	F0－00	动	－
FE－19	User－defined parameter 19	Same as FE－00	F0－00	＊	－
FE－20	User－defined parameter 20	Same as FE－00	F0－00	紓	－
FE－21	User－defined parameter 21	Same as FE－00	F0－00	＊	－
FE－22	User－defined parameter 22	Same as FE－00	F0－00	＊	－
FE－23	User－defined parameter 23	Same as FE－00	F0－00	\％	－
FE－24	User－defined parameter 24	Same as FE－00	F0－00	＊	－
FE－25	User－defined parameter 25	Same as FE－00	F0－00	i	－
FE－26	User－defined parameter 26	Same as FE－00	F0－00	动	－
FE－27	User－defined parameter 27	Same as FE－00	F0－00	＊	－
FE－28	User－defined parameter 28	Same as FE－00	F0－00	＊	－
FE－29	User－defined parameter 29	Same as FE－00	F0－00	动	－
Group FF：Manufacturer Parameters，Access Denied					
Group FP：Function Parameter Management					
FP－00	User password	0 to 65535	0	i	－
FP－01	Parameter initialization	0 ：No operation 1：Restore factory parameters except motor parameters 2：Clear records 4：Back up current user parameters 501：Restore user backup parameters	0	\star	－
FP－02	Parameter display property	00 to 11	11	\％	－
FP－03	Selection of individualized parameter display	00 to 11	00	访	－
FP－04	Selection of parameter modification	0， 1	0	水	－
Group A0：Torque Control and Limit					
A0－00	Speed／Torque control selection	0， 1	0	\star	153
A0－01	Torque reference source in torque control	0 to 7	0	\star	153
A0－03	Torque digital setting in torque control	－200．0\％to 200．0\％	150．0\％	动	153

Para．No．	Para．Name	Setting Range	Default	Property	Page
A0－05	Forward max．frequency in torque control	0.00 Hz to max．frequency (F0-10)	50.00 Hz	动	153
A0－06	Reverse max．frequency in torque control	0.00 Hz to max．frequency (F0-10)	50.00 Hz	动	153
A0－07	Acceleration time in torque control	0．00s to 650．00s	0．00s	动	153
A0－08	Deceleration time in torque control	0．00s to 650．00s	0．00s	\％	153
Group A1：Virtual DI／DO					
A1－00	VDI1 function selection	0 to 59	0	\star	197
A1－01	VDI2 function selection	0 to 59	0	\star	197
A1－02	VDI3 function selection	0 to 59	0	\star	197
A1－03	VDI4 function selection	0 to 59	0	\star	197
A1－04	VDI5 function selection	0 to 59	0	\star	197
A1－05	VDI active state setting mode	00000 to 11111	00000	\star	197
A1－06	Selection of VDI active state	00000 to 11111	00000	\star	197
A1－07	Function selection for Al1 used as DI	0 to 59	0	\star	199
A1－08	Function selection for Al2 used as DI	0 to 59	0	\star	199
A1－09	Function selection for Al3 used as DI	0 to 59	0	\star	199
A1－10	Active state selection for AI used as DI	000 to 111	000	动	199
A1－11	VDO1 function selection	0 to 41	0	动	198
A1－12	VDO2 function selection	0 to 41	0	动	198
A1－13	VDO3 function selection	0 to 41	0	动	198
A1－14	VDO4 function selection	0 to 41	0	紟	198
A1－15	VDO5 function selection	0 to 41	0	动	198
A1－16	VDO1 output delay	0．0s to 3600．0s	0．0s	i	198
A1－17	VDO2 output delay	0．0s to 3600．0s	0．0s	＊	198
A1－18	VDO3 output delay	0．0s to 3600.0 s	0．0s	\％	198
A1－19	VDO4 output delay	0．0s to 3600．0s	0．0s	\％	198
A1－20	VDO5 output delay	0．0s to 3600．0s	0．0s	动	198
A1－21	VDO active mode selection	00000 to 11111	00000	H	198
Group A2：Motor 2 Parameters					
A2－00	Motor type selection	0 to 1	0	\star	176
A2－01	Rated motor power	0.1 to 1000.0 kW	Model dependent	\star	176
A2－02	Rated motor voltage	1 to 2000 V	Model dependent	\star	176
A2－03	Rated motor current	0.01 to 655.35 A（AC drive power $\leq 55 \mathrm{~kW}$ ） 0.1 to 6553.5 A（AC drive power＞ 55 kW ）	Model dependent	\star	176

Para. No.	Para. Name	Setting Range	Default	Property	Page
A2-04	Rated motor frequency	0.01 Hz to max. frequency	Model dependent	\star	176
A2-05	Rated motor speed	1 to 65535 rpm	Model dependent	\star	176
A2-06	Stator resistance	0.001 to 65.535Ω (AC drive power $\leq 55 \mathrm{~kW}$) 0.0001 to 6.5535Ω (AC drive power $>55 \mathrm{~kW}$)	Auto-tuning dependent	\star	176
A2-07	Rotor resistance	0.001 to 65.535Ω (AC drive power $\leq 55 \mathrm{~kW}$) 0.0001 to 6.5535Ω (AC drive power $>55 \mathrm{~kW}$)	Auto-tuning dependent	\star	176
A2-08	Leakage inductive reactance	0.01 to 655.35 mH (AC drive power $\leq 55 \mathrm{~kW}$) 0.001 to 65.535 mH (AC drive power > 55 kW)	Auto-tuning dependent	\star	177
A2-09	Mutual inductive reactance	```0.1 to 6553.5 mH (AC drive power \leq55 kW) 0.01 to 655.35 mH (AC drive power > 55 kW)```	Auto-tuning dependent	\star	177
A2-10	No-load current	0.01 A to A2-03 (AC drive power $\leq 55 \mathrm{~kW}$) 0.1 A to A2-03 (AC drive power > 55 kW)	Auto-tuning dependent	\star	177
A2-27	Encoder pulses per revolution	1 to 65535	1024	\star	177
A2-28	Encoder type	0: ABZ incremental encoder 2: Resolver	0	\star	177
A2-29	Speed feedback channel selection	0: Local PG card 1: Extension PG card 2: Pulse input (DI5)	0	\star	177
A2-30	A/B phase sequence of ABZ incremental encoder	0: Forward 1: Reserve	0	\star	177
A2-31	Encoder installation angle	0.0 to 359.9	0.0	\star	177
A2-34	Number of pole pairs of resolver	1 to 65535	1	\star	177
A2-36	Encoder wire-break fault detection time	0.0 s: No detection 0.1 s to 10.0 s	0.0s	\star	-
A2-37	Auto-tuning selection	0 to 3	0	\star	177
A2-38	Speed loop proportional gain 1	1 to 100	30	*	-
A2-39	Speed loop integral time 1	0.01s to 10.00s	0.50	紓	-
A2-40	Switchover frequency 1	0.00 to A2-43	5.00	*	-
A2-41	Speed loop proportional gain 2	1 to 100	20	*	-
A2-42	Speed loop integral time 2	0.01s to 10.00s	1.00	动	-
A2-43	Switchover frequency 2	A2-40 to max. frequency	10.00	*	-
A2-44	Vector control slip gain	50\% to 200\%	100\%	*	-

Para．No．	Para．Name	Setting Range	Default	Property	Page
A2－45	Speed loop filter time constant	0.000 s to 0.100 s	0．000s	动	－
A2－47	Torque limit source in speed control	0 to 7	0	紓	－
A2－48	Digital setting of torque limit in speed control	0．0\％to 200．0\％	150．0\％	i	－
A2－49	Torque limit source in speed control（regenerative）	0 to 8	0	3	－
A2－50	Digital setting of torque limit in speed control（regenerative）	0．0\％to 200．0\％	150．0\％	\％	－
A2－51	Excitation adjustment proportional gain	0 to 60000	2000	3	－
A2－52	Excitation adjustment integral gain	0 to 60000	1300	䘾	－
A2－53	Torque adjustment proportional gain	0 to 60000	2000	i	－
A2－54	Torque adjustment integral gain	0 to 60000	1300	i	－
A2－55	Speed loop integral separation selection	0 ：Disabled 1：Enabled	0	3	－
A2－59	Max．torque coefficient in field weakening area	50% to 200%	100\％	3	－
A2－60	Regenerative power limit selection	0 ：Disabled 1：Enabled in whole process 2：Enabled at constant speed 3：Enabled during deceleration	0	3	－
A2－61	Regenerative power upper limit	0．0\％to 200．0\％	Model dependent	3	－
A2－62	Motor 2 control mode	0 to 2	0	\star	－
A2－63	Motor 2 acceleration／deceleration time selection	0 to 4	0	3	－
A2－64	Motor 2 torque boost	0．0\％：Ineffective 0.1% to 30.0%	Model dependent	3	－
A2－66	Motor 2 oscillation suppression gain	0 to 100	40	3	－
Group A5：Control Optimization					
A5－00	DPWM switchover frequency upper limit	5.00 Hz to max．frequency	8.00 Hz	3	156
A5－01	PWM modulation pattern	0， 1	0	\％	156
A5－02	Dead zone compensation mode selection	0，1	1	动	－
A5－03	Random PWM depth	0 to 10	0	\％	156
A5－04	Overcurrent fast prevention	0， 1	1	䘾	163

Para．No．	Para．Name	Setting Range	Default	Property	Page
A5－05	Voltage over modulation coefficient	100\％to 110\％	105\％	\star	156
A5－06	Undervoltage threshold	210 to 420 V	350 V	动	163
A5－08	Dead－zone time adjustment	100\％to 200\％	150\％	\star	－
A5－09	Overvoltage threshold	200.0 to 2500.0 V	Model dependent	\star	163
Group A6：Al Curve Setting					
A6－00	Al curve 4 min．input	－10．00 V to A6－02	0.00 V	动	113
A6－01	Corresponding percentage of Al curve 4 min．input	－100．0\％to 100．0\％	0．0\％	\％	113
A6－02	Al curve 4 inflexion 1 input	A6－00 to A6－04	3.00 V	is	113
A6－03	Corresponding percentage of Al curve 4 inflexion 1 input	－100．0\％to 100．0\％	30．0\％	\％	113
A6－04	Al curve 4 inflexion 2 input	A6－02 to A6－06	6.00 V	3	113
A6－05	Corresponding percentage of Al curve 4 inflexion 2 input	－100．0\％to 100．0\％	60．0\％	\％	113
A6－06	Al curve 4 max．input	A6－04 to 10．00 V	10.00 V	动	113
A6－07	Corresponding percentage of Al curve 4 max．input	－100．0\％to 100．0\％	100．0\％	\％	113
A6－08	Al curve 5 min．input	－10．00 V to A6－10	－10．00 V	＊	113
A6－09	Corresponding percentage of Al curve 5 min．input	－100．0\％to 100．0\％	－100．0\％	\％	113
A6－10	Al curve 5 inflexion 1 input	A6－08 to A6－12	－3．00 V	动	113
A6－11	Corresponding percentage of Al curve 5 inflexion 1 input	－100．0\％to 100．0\％	－30．0\％	\％	113
A6－12	Al curve 5 inflexion 2 input	A6－10 to A6－14	3.00 V	3	113
A6－13	Corresponding percentage of Al curve 5 inflexion 2 input	－100．0\％to 100．0\％	30．0\％	动	113
A6－14	Al curve 5 max．input	A6－12 to 10.00 V	10.00 V	动	113
A6－15	Corresponding percentage of Al curve 5 max．input	－100．0\％to 100．0\％	100．0\％	\％	113
A6－24	Jump point of Al1 input corresponding setting	－100．0\％to 100．0\％	0．0\％	去	－
A6－25	Jump amplitude of Al1 input corresponding setting	0．0\％to 100．0\％	0．5\％	\％	－

Para．No．	Para．Name	Setting Range	Default	Property	Page
A6－26	Jump point of Al2 input corresponding setting	－100．0\％to 100．0\％	0．0\％	水	－
A6－27	Jump amplitude of AI2 input corresponding setting	0．0\％to 100．0\％	0．5\％	＊	－
A6－28	Jump point of Al3 input corresponding setting	－100．0\％to 100．0\％	0．0\％	＊	－
A6－29	Jump amplitude of Al3 input corresponding setting	0．0\％to 100．0\％	0．5\％	＊	－
Group A7：User Programmable Card					
A7－00	User programmable function selection	0：Disabled 1：Enabled	0	\star	179
A7－01	Control board output terminal control mode selection	00000 to 11111	00000	\star	180
A7－02	User programmable card AI3 and AO2 function selection	0 to 7	0	\star	179
A7－03	PLC program controls the FMP output	0．0\％to 100．0\％	0．0\％	\％	180
A7－04	PLC program controls the AO1 output	0．0\％to 100．0\％	0．0\％	动	180
A7－05	Selection of PLC program controlling digital output	000 to 111	000	紓	180
A7－06	Setting frequency reference via the user programmable card	－100．00\％to 100．00\％	0．00\％		181
A7－07	Setting torque reference via the user programmable card	－200．0\％to 200．0\％	0．0\％	i	181
A7－08	Setting running command via the user programmable card	0 to 7	0	＊	180
A7－09	Setting torque reference via the user programmable card	0 ：No fault 80 to 89：User defined fault code	0	\％	181
Group A8：Point－point Communication					
A8－00	Point－point communication	0：Disabled 1：Enabled	0	动	188
A8－01	Master or slave selection	0：Master 1：Slave	0	＊	188
A8－02	Selection of action of the slave in point－point communication	000 to 111	011	\star	189
A8－03	The slave received data	0：Output frequency 1：Frequency reference	0		189
A8－04	Zero offset of received data	－100．00 to 100.00	0.00	动	189
A8－05	Gain of received data	－10．00 to 10.00	1.00	\％	189
A8－06	Point－point communication interruption detection time	0．0s to 10．0s	1．0s	＊	189
A8－07	Master data sending cycle in point－point communication	0.001 s to 10.000 s	0．001s	＊	189

Para．No．	Para．Name	Setting Range	Default	Property	Page
A8－11	Window width	0.20 to 10.00 Hz	0.50 Hz		189
Group AC：AI／AO Correction					
AC－00	Al1 measured voltage 1	－10．00 to 10．000 V	Factory－ corrected	坔	－
AC－01	Al1 displayed voltage 1	－10．00 to 10．000 V	Factory－ corrected	动	－
AC－02	Al1 measured voltage 2	－10．00 to 10．000 V	Factory－ corrected	动	－
AC－03	Al1 displayed voltage 2	－10．00 to 10．000 V	Factory－ corrected	3	－
AC－04	Al2 measured voltage 1	－10．00 to 10．000 V	Factory－ corrected	动	－
AC－05	Al2 displayed voltage 1	－10．00 to 10．000 V	Factory－ corrected	3	－
AC－06	Al2 measured voltage 2	－10．00 to 10．000 V	Factory－ corrected	3	－
AC－07	Al2 displayed voltage 2	－10．00 to 10．000 V	Factory－ corrected	3	－
AC－08	Al3 measured voltage 1	－10．00 to 10．000 V	Factory－ corrected	放	－
AC－09	AI3 displayed voltage 1	－10．00 to 10．000 V	Factory－ corrected	3	－
AC－10	Al3 measured voltage 2	－10．00 to 10．000 V	Factory－ corrected	3	－
AC－11	AI3 displayed voltage 2	－10．00 to 10．000 V	Factory－ corrected	3	－
AC－12	AO1 target voltage 1	－10．00 to 10．000 V	Factory－ corrected	i	－
AC－13	AO1 measured voltage 1	－10．00 to 10．000 V	Factory－ corrected	3	－
AC－14	AO1 target voltage 2	－10．00 to 10．000 V	Factory－ corrected	3	－
AC－15	AO1 measured voltage 2	－10．00 to 10．000 V	Factory－ corrected	3	－
AC－16	AO2 target voltage 1	－10．00 to 10．000 V	Factory－ corrected	i	－
AC－17	AO2 measured voltage 1	－10．00 to 10．000 V	Factory－ corrected	3	－
AC－18	AO2 target voltage 2	－10．00 to 10．000 V	Factory－ corrected	\％	－
AC－19	AO2 measured voltage 2	－10．00 to 10．000 V	Factory－ corrected	3	－

B. 3 Monitoring Parameters

Para. No.	Para. Name	Display Range	Page
Group U0: Monitoring Parameters			
U0-00	Running frequency	0.00 to 500.0 Hz	167
U0-01	Frequency reference	0.00 to 500.0 Hz	167
U0-02	Bus voltage	0.0 to 3000.0 V	167
U0-03	Output voltage	0 to 1140 V	167
U0-04	Output current	0.00 to 655.35 A	167
U0-05	Output power	0 to 32767	167
U0-06	Output torque	-200.0\% to 200.0\%	167
U0-07	DI state	0 to 32767	168
U0-08	DO state	0 to 1023	168
U0-09	Al1 voltage	-	-
U0-10	Al2 voltage	-	168
U0-11	Al3 voltage	-	-
U0-12	Count value	-	-
U0-13	length value	-	-
U0-14	Load speed display	0 to 65535	168
U0-15	PID reference	0 to 65535	168
U0-16	PID feedback	0 to 65535	168
U0-17	PLC stage	-	-
U0-18	Pulse reference	0.00 to 20.00 kHz	168
U0-19	Feedback speed	-500.0 to 500.0 Hz	168
U0-20	Remaining running time	0.0 to 6500.0 min	169
U0-21	Al1 voltage before correction	0.00 to 10.57 V	169
U0-22	Al2 voltage (V)/ current (mA) before correction	0.00 to 10.57 V	169
U0-23	AI3 voltage before correction	-10.57 to 10.57 V	169
U0-24	Motor speed	0 to rated motor speed	169
U0-25	Accumulative power-on time	-	-
U0-26	Accumulative running time	-	-
U0-27	Pulse reference	0 to 65535 Hz	169
U0-28	Communication reference	-100.00\% to 100.00\%	169
U0-29	Encoder feedback speed	-	169
U0-30	Main frequency reference	0.00 to 500.00 Hz	169

Para. No.	Para. Name	Display Range	Page
U0-31	Auxiliary frequency reference	0.00 to 500.00 Hz	169
U0-32	Viewing any register address value	-	-
U0-34	Motor temperature	-	169
U0-35	Target torque	-200.0\% to 200.0\%	169
U0-36	Resolver position	0 to 4095	169
Para. No.	Para. Name	Display Range	Page
U0-37	Power factor angle	-180° to 180°	169
U0-38	ABZ position	0 to 65535	170
U0-39	Target voltage upon V/F separation	0 V to rated motor voltage	170
U0-40	Output voltage upon V/F separation	0 V to rated motor voltage	170
U0-41	DI state display	-	170
U0-42	DO state display	-	170
U0-43	DI set for function state display 1	-	170
U0-44	DI set for function state display 2	-	171
U0-45	Fault information	0 to 51	-
U0-58	Phase Z counting	0 to 65535	171
U0-59	Frequency Reference	-100.00% to 100.00%	171
U0-60	Running frequency	-100.00\% to 100.00\%	171
U0-61	AC drive state	0 to 65535	171
U0-62	Current fault code	0 to 99	171
U0-63	Sending value of point-point communication	-100.00\% to 100.00%	171
U0-64	Number of slaves	0 to 63	171
U0-65	Torque upper limit	-200.00\% to 200.00\%	171
U0-66	Communication extension card type	100: CANopen 200: PROFIBUS-DP 300: CANlink	-
U0-67	Communication extension card version	-	-
U0-69	Speed of transmitting DP	0.00 Hz to max. frequency	-
U0-70	Motor speed of transmitting DP	0 to rated motor	-
U0-71	Communication card current display	-	-
U0-72	Communication card faulty state	-	-
U0-73	Motor SN	0 : Motor 1 1: Motor 2	-
U0-74	AC drive output torque	-200.0\% to 200.00\%	171
U0-76	Low bits of accumulative power consumption	0.0 to 999.0 (min. unit: 0.1°)	171
U0-77	High bits of accumulative power consumption	0 to 65535 (min. unit: 1°)	171
U0-78	Linear speed	0 to 65535	171

Index
A
About Use of GT600 Terminals 220
AC Motor (Induction/Asynchronous) 6
Acceleration/Deceleration Time 140
Acceleration/Deceleration Time Switchover 214
Adjusting AC Drive Parameters 6
Al Terminals 199
Al1 Input Voltage Upper/Lower Limit 217
Analog and High-speed Pulse Output (AO, FMR)209
AO and Pulse Output Terminals 200
Application 228
Auxiliary Control. 156
Auxiliary Function 210
B
Backplate Mounting 26
Braking Resistor 242
Braking Unit 242
Braking Unit Applied Voltage 151
Bus Structure 228
C
CE Certification 306
CE Low Voltage Directive Compliance 306
CE Mark 306
Command Source + Frequency Reference Setting Channe 133
Communication 202
Communication Data Address 225
Communication Parameter Addresses 232
Communication Parameter Description 235
Complying with Local Regulations 5
Control Circuit Terminals 61
Control Circuit Terminals
Control Circuit Terminals 190
Control Circuit Wiring 61
Control Performance 146
Cooling Fan 217
Counting 174
Current Detection 216
Current Limit Control 149
Current Loop 156
D
Daily Inspection 280
Data Format 229
Deceleration Time for Emergency Stop 218
Definition of Terms 308
De-rating 18
Description of Parameters 100
DI Terminals 190
Digital Output (DO, Relay, FMR) 209
DO Terminals 194
E
Electrical Installation 44
Electrical Installation - Safety 5
Electrical Safety 4
EMC Guidelines Compliance 308
Extension Cards 247
Extension Communication Cards 256
Extension PG Cards 266
External Operating Panel 246
F
Fault Display 293
Fault Protection Action Selection 159
Fault Reset 159
Faults and Diagnostics 295
Fixed Length Control 173
Frequency Detection (FDT) 213
Frequency Reached Detection 215
Frequency Reference Limit 134
Frequency Reference Reached Detection Width 213Contactor241
\qquad
Function Parameter Operations
Functional Extension Cards 249
Fuse 241
FWD/REV Switchover Dead-zone Time 211
G
Get Familiar With Operating Panel 86
H
Hibernating and Wakeup 217
I
IGBT Temperature 217
Improving Field Weakening Area Performance. 156
Inbuilt LED Operating Panel 72
Installation Environment 20
Installation Method and Procedures 26
Insulation Test on Main Circuit. 283
Interfaces and Communication 220
Internal View of GT600 9
Introduction 72
Introduction 330
J
Jog210
Jump Frequency 211
L
LED Operating Panel Menu Structure 76
Load Lost Protection. 162
M
Machine/System Design 4
Main \& Auxiliary Calculation 131
Main Circuit Cable Recommendations 56
Main Circuit Terminals 45
Main Circuit Wiring 45
Maintenance and Inspection. 280
Master and Slave Control 182
MCCB 241
Mechanical Installation 20
MF.K Key Function 82
Modbus Communication Protocol 228
Monitoring 165
356 Monitoring Parameters 353
Motor Peripheral EMC Devices 309
Auto- tuning Non-Parameter Data 226
Peripherals and Options 238
Motor O
Overheat
Protection Operating Panel (Keypad \& Display) 72
Motor Output Overcurrent Protection 164 164
Overload Output Power correction 218
Protection ... Overall Arrangément off Function P Parameters 79
Mounting Overcurrent Fast Prevention
Dimensio 163
Dimensio 163
Mounting P in Cabinet Parameter Data 31 225
Mounting Orientatio Parameter Initialization 209
n and Parameter Table 330
Clearanc
Password. Security. 2.1. 83
e
e
Periodic Inspection
Periodic Inspection 282 282
Multi-
Multi-
Phase Loss Protection 158
Please Read This Important Information 1
Power Dip Ride-through 161
Process Control 172
Product Information 8
Product Type Identification 8
Protections 157
Q
Quick Setup 86
R
Ratings 13
Read and Write Function Parameters 202
Read and Write State Parameters 204
Remove and Refit the Front Cover 40
Periodic Inspection Items
Periodic Inspection Items 282 282
functional
functional
Peripheral.Electrical.Devices 224 240
Replacement of Wearing Components 284
Resetting Fault 294
Reverse Run Prohibited 211
Running Mode When Frequency Reference Below Lower Limit 134
Running Time Threshold This Time 218
S
Safety Information 290
Safety Information and Precautions 4
Safety of Personnel 4
Saving and Restoring Settings 82
S-curve Setting 140
Serial Communication 107
Serial Communication 223
Set Frequency Reference 108
Set Main Frequency Reference 108
Setting Auxiliary Frequency Reference 129
Setup Flowchart 87
Shielded Cable 326
Solutions to Common EMC Interference Problems 328
Solutions to Current Leakage 327
Speed Error Protection 163
Speed Loop 152
Standard Parameters 331
Standards Compliance 306
Start Mode 135
Start the AC Drive 135
Start/Stop Command Source 100
Stop Mode 138
Stop the AC Drive 135
Storage 288
SVC Speed Feedback Stability 153
SVC/FVC Slip Compensation Gain 152
Symptoms and Diagnostics 302
T
Technical Specifications 14
Terminal I/O Control 101
The Wobble Function 172
Through Hole Mounting 28
Through-hole Mounting Bracket 274
Timing Function 216
Torque Boost 149
Troubleshooting 290
Troubleshooting During Trial Run. 291
Typical System Connection 44
U
UL Certification 329
Undervoltage 163
Undervoltage \& Overvoltage Threshold 163
User Programmable Card 177
V
V/F Curve 146
VDI Terminals 97
VDO Terminals 198
Version Change Record 355
Voltage Limit 151
W
Warnings, Cautions and Notes 4
Warranty Agreement 288
Wiring Checklist 70
Wiring Diagrams 64
Working Environment and Handling 5
Write Frequency/Torque Reference 208
Write RUN Command 206
Z
Zero Current Detection 215

Revision History

Date	Version	Change Description
Nov 2015	V0.0	It corresponds to V1.1 of the GT600 High-performance AC drive User guide in Chinese version.
Apr 2016	B00	Add power rating models of GT600-4T200G(-L) to GT600-4T450G(-L). Firmware version: F7-10 = U76.57, F7-11 = U77.57
Nov 2016	B01	Modified Approvals, designation rule and nameplate, Table 1-1 and Table 1-2.
Nov 2018	B02	Updated K\&R's logo.
Apr 2020	B03	Deleted the service hotline. Updated input signal characteristic of AO2-GND terminal Updated "1.3 Ratings" Chapter. Updated "2.3 Mounting Dimensions" Chapter.
Updated "3.1 Typical System Connection" Chapter.		

K\&R ACDRIVE

Qingdao K\&R Technology Co.Ltd.

Adrress: Hi-tech park A4 of I high and new technology development zone, no. 1 jinye road, chengyang Qingdao postcode:266100
Website:Http://www.k-r.net.cn

[^0]: If setting of A7-09 is out of 80 to 89 , the setting will not take effect.

